Regression Performance of Relational Fusion Networks on Urban Road Networks
Resumo
Urban transportation planning in densely populated areas is a problem in constant need of efficient solutions. Graphs can represent urban street networks and be used to train algorithms, enriching decisions with information learned from structural and topological data of cities. Relational Fusion Networks (RFNs) are Graph Neural Networks specifically tailored for learning on road networks. This work explores the use of RFNs in estimating free-flow travel times and includes experiments on relevant cities from all continents. Results demonstrate the significance of fusion functions and city characteristics in both the learning process of RFNs on regression tasks and the capacity to extrapolate acquired knowledge to different cities.Referências
Abhinav Nippani, Dongyue Li, H. J. H. N. K. H. R. Z. (2024). Graph neural networks for road safety modeling: Datasets and evaluations for accident analysis.
Albino, V., Berardi, U., and Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22:3–21.
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv, abs/1806.01261.
Beineke, L. W. and Bagga, J. S. (2021). Line graphs and line digraphs. Developments in Mathematics.
Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.
Boeing, G. (2019). Urban spatial order: street network orientation, configuration, and entropy. Applied Network Science, 4(1).
Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Wiltshire, B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A., Li, Y., and Velivckovi’c, P. (2021). Eta prediction with graph neural networks in google maps. Proc. of CIKM.
Gharaee, Z., Kowshik, S., Stromann, O., and Felsberg, M. (2021). Graph representation learning for road type classification. Pattern Recognit., 120:108174.
Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Jepsen, T. S., Jensen, C. S., and Nielsen, T. D. (2020). Relational fusion networks: Graph convolutional networks for road networks. IEEE Transactions on Intelligent Transportation Systems, 23:418–429.
Jepsen, T. S., Jensen, C. S., Nielsen, T. D., and Torp, K. (2018). On network embedding for machine learning on road networks: A case study on the danish road network. 2018 IEEE International Conference on Big Data (Big Data), pages 3422–3431.
Karimi, K. (2012). A configurational approach to analytical urban design: ‘space syntax’ methodology. URBAN DESIGN International, 17:297–318.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
OpenStreetMap (2017). OpenStreetMap contributors. [link].
Parthasarathi, P., Levinson, D. M., and Hochmair, H. H. (2013). Network structure and travel time perception. PLoS ONE, 8.
Sanchez-Lengeling, B., Reif, E., Pearce, A., and Wiltschko, A. B. (2021). A gentle introduction to graph neural networks. Distill. [link].
Silva, T. H. and Silver, D. (2024). Using graph neural networks to predict local culture. arXiv.
Strano, E., Viana, M. P., da Fontoura Costa, L., Cardillo, A., Porta, S., and Latora, V. (2013). Urban street networks, a comparative analysis of ten european cities. Environment and Planning B: Planning and Design, 40:1071 – 1086.
Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In Neural Information Processing Systems.
Yu, T., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In International Joint Conference on Artificial Intelligence.
Zhang, L. and Long, C. (2023). Road network representation learning: A dual graph-based approach. ACM Transactions on Knowledge Discovery from Data, 17:1 – 25.
Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., and Li, H. (2020). T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21:3848–3858.
Albino, V., Berardi, U., and Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22:3–21.
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv, abs/1806.01261.
Beineke, L. W. and Bagga, J. S. (2021). Line graphs and line digraphs. Developments in Mathematics.
Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.
Boeing, G. (2019). Urban spatial order: street network orientation, configuration, and entropy. Applied Network Science, 4(1).
Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Wiltshire, B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A., Li, Y., and Velivckovi’c, P. (2021). Eta prediction with graph neural networks in google maps. Proc. of CIKM.
Gharaee, Z., Kowshik, S., Stromann, O., and Felsberg, M. (2021). Graph representation learning for road type classification. Pattern Recognit., 120:108174.
Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Jepsen, T. S., Jensen, C. S., and Nielsen, T. D. (2020). Relational fusion networks: Graph convolutional networks for road networks. IEEE Transactions on Intelligent Transportation Systems, 23:418–429.
Jepsen, T. S., Jensen, C. S., Nielsen, T. D., and Torp, K. (2018). On network embedding for machine learning on road networks: A case study on the danish road network. 2018 IEEE International Conference on Big Data (Big Data), pages 3422–3431.
Karimi, K. (2012). A configurational approach to analytical urban design: ‘space syntax’ methodology. URBAN DESIGN International, 17:297–318.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
OpenStreetMap (2017). OpenStreetMap contributors. [link].
Parthasarathi, P., Levinson, D. M., and Hochmair, H. H. (2013). Network structure and travel time perception. PLoS ONE, 8.
Sanchez-Lengeling, B., Reif, E., Pearce, A., and Wiltschko, A. B. (2021). A gentle introduction to graph neural networks. Distill. [link].
Silva, T. H. and Silver, D. (2024). Using graph neural networks to predict local culture. arXiv.
Strano, E., Viana, M. P., da Fontoura Costa, L., Cardillo, A., Porta, S., and Latora, V. (2013). Urban street networks, a comparative analysis of ten european cities. Environment and Planning B: Planning and Design, 40:1071 – 1086.
Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In Neural Information Processing Systems.
Yu, T., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In International Joint Conference on Artificial Intelligence.
Zhang, L. and Long, C. (2023). Road network representation learning: A dual graph-based approach. ACM Transactions on Knowledge Discovery from Data, 17:1 – 25.
Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., and Li, H. (2020). T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21:3848–3858.
Publicado
20/05/2024
Como Citar
CERVI, Thales E.; LÜDERS, Ricardo; SILVA, Thiago H.; DELGADO, Myriam R..
Regression Performance of Relational Fusion Networks on Urban Road Networks. In: WORKSHOP DE COMPUTAÇÃO URBANA (COURB), 8. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 141-154.
ISSN 2595-2706.
DOI: https://doi.org/10.5753/courb.2024.3270.