Detection of Visceral Leishmaniasis in Humans Using Neural Networks

  • Viviane Barbosa Leal Dias UFPI
  • Armando Luz Borges UFPI
  • Clésio de Araujo Gonçalves UFPI / IFSertão
  • Ana Carolina Landim Pacheco UFPI
  • Romuere Rodrigues Veloso e Silva UFPI

Abstract


Leishmaniasis is a serious disease transmitted by infected mosquitoes, which can be fatal without adequate treatment. A quick and efficient diagnosis is essential. Although Computer Vision techniques can help with diagnosis, they are often expensive and time-consuming due to high computational requirements. This study aims to train low computational cost convolutional neural networks to assist in the diagnosis of Visceral Leishmaniasis. Our results were compared with four previous works, and our method showed significant and promising results. This demonstrates that low-cost convolutional neural networks can be an effective approach for the automated diagnosis of visceral leishmaniasis in humans.

Keywords: Deep Learning, Computer Vision, Visceral Leishmaniasis

References

Borges, A. L., de Araújo Gonçalves, C., Dias, V. B. L., de Andrade, N. B., Aguiar, B. G. A., and e Silva, R. R. V. (2023). Visceral leishmaniasis detection using deep learning techniques and multiple color space bands.

e Silva, R. R. V., de Araujo, F. H. D., dos Santos, L. M. R., Veras, R. M. S., and de Medeiros, F. N. (2016). Optic disc detection in retinal images using algorithms committee with weighted voting. IEEE Latin America Transactions, 14(5):2446–2454.

Fleiss, J. L., Levin, B., and Paik, M. C. (2013). Statistical methods for rates and proportions. John Wiley & Sons.

Gonçalves, C. d. A., Borges, A. L., Dias, V. B. L., de Andrade, N. B., Aguiar, B. G. A., and Negligenciados, P. (2022). Método automático para detecção de leishmaniose visceral em humanos.

Górriz, M., Aparicio, A., Raventós, B., Vilaplana, V., Sayrol, E., and López-Codina, D. (2018). Leishmaniasis parasite segmentation and classification using deep learning. In International Conference on Articulated Motion and Deformable Objects, pages 53–62. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications.

Isaza-Jaimes, A., Bermúdez, V., Bravo, A., Sierra Castrillo, J., Hernández Lalinde, J. D., Fossi, C. A., Flórez, A., and Rodríguez, J. E. (2020). A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral leishmaniasis.

Kumar, R. and Nylén, S. (2012). Immunobiology of visceral leishmaniasis. Frontiers in immunology, 3:251.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2019). Mobilenetv2: Inverted residuals and linear bottlenecks.

Silva, J., Zacarias, D., Figueiredo, L., Soares, M., Ishikawa, E., Costa, D., and Costa, C. (2014). Bone marrow parasite burden among patients with New World kala-azar is associated with disease severity. The American Journal of Tropical Medicine and Hygiene, 90.
Published
2023-10-19
DIAS, Viviane Barbosa Leal; BORGES, Armando Luz; GONÇALVES, Clésio de Araujo; PACHECO, Ana Carolina Landim; VELOSO E SILVA, Romuere Rodrigues. Detection of Visceral Leishmaniasis in Humans Using Neural Networks. In: UNIFIED COMPUTING MEETING OF PIAUÍ (ENUCOMPI), 16. , 2023, Piripiri/PI. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 105-112. DOI: https://doi.org/10.5753/enucompi.2023.26623.