Approximate Reciprocal Square Root with Single - and Half-Precision Floats
Resumo
In this work, we compared the precision, speed, and power consumption of the reciprocal square root of a single-precision floating point number, using different approximation techniques. We also devised an equivalent approximation for half-precision floating point numbers, and evaluated its performance across the whole range of positive non-zero 16-bit floating point values.Referências
IEEE 754-2008 (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008.
Kushner, D. (2002). The wizardry of id. IEEE Spectrum, pages 42–47.
McEniry, C. (2007). The mathematics behind the fast inverse square root function code.
Rau, C. (accessed on 2017-11-16). IEEE 754-based half-precision floating point library. https://half.sourceforge.net/.
Kushner, D. (2002). The wizardry of id. IEEE Spectrum, pages 42–47.
McEniry, C. (2007). The mathematics behind the fast inverse square root function code.
Rau, C. (accessed on 2017-11-16). IEEE 754-based half-precision floating point library. https://half.sourceforge.net/.
Publicado
13/04/2018
Como Citar
SUSIN, Matheus M.; WANNER, Lucas.
Approximate Reciprocal Square Root with Single - and Half-Precision Floats. In: ESCOLA REGIONAL DE ALTO DESEMPENHO DE SÃO PAULO (ERAD-SP), 9. , 2018, São José dos Campos.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2018
.
p. 49-52.
DOI: https://doi.org/10.5753/eradsp.2018.13600.