Automated Chromosome Classification for Karyotype Construction Using Deep Learning
Resumo
This project aims to automate human karyotype generation to optimize cytogenetic analysis, seeking to improve accuracy and reduce manual workload. Using a public dataset, the YOLOv10 model was employed for chromosome detection, demonstrating a mean average performance of 99.4%. For segmentation, the SAM model was used as a proof of concept, proving very successful in most cases for generating masks, although it faces challenges with overlapping chromosomes. In conclusion, the detection achieved excellent performance, and segmentation is promising with room for improvement.Referências
Erwinsyah, R., Riandi, and Nurjhani, M. (2017). Relevance of human chromosome analysis activities against mutation concept in genetics course. IOP Conf. Ser. Mater. Sci. Eng., 180:012285.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R. (2023). Segment anything.
Remani Sathyan, R., Chandrasekhara Menon, G., S, H., Thampi, R., and Duraisamy, J. H. (2022). Traditional and deep-based techniques for end-to-end automated karyotyping: A review. Expert Systems, 39(3):e12799.
Tseng, C.-H. L.-E. K.-J. (2022). CIL:54816, homo sapiens linnaeus, 1758, epithelial cell.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., and Ding, G. (2024). YOLOv10: Real-time end-to-end object detection.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R. (2023). Segment anything.
Remani Sathyan, R., Chandrasekhara Menon, G., S, H., Thampi, R., and Duraisamy, J. H. (2022). Traditional and deep-based techniques for end-to-end automated karyotyping: A review. Expert Systems, 39(3):e12799.
Tseng, C.-H. L.-E. K.-J. (2022). CIL:54816, homo sapiens linnaeus, 1758, epithelial cell.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., and Ding, G. (2024). YOLOv10: Real-time end-to-end object detection.
Publicado
12/11/2025
Como Citar
SPEGGIORIN, Laura G.; KOWALSKI, Thayne W.; JUNG, Claudio R.; RECAMONDE-MENDOZA, Mariana.
Automated Chromosome Classification for Karyotype Construction Using Deep Learning. In: ESCOLA REGIONAL DE APRENDIZADO DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL DA REGIÃO SUL (ERAMIA-RS), 1. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 156-159.
DOI: https://doi.org/10.5753/eramiars.2025.16745.