Análise de Métodos de Ensemble Learning para Detecção de Spam
Resumo
O crescente volume de spam e e-mails maliciosos exige a contínua evolução das técnicas de detecção. Este trabalho apresenta uma análise comparativa de diferentes arquiteturas de ensemble learning (Voting, Stacking e Bagging) aplicadas à base de dados Spambase. Os experimentos, conduzidos na plataforma WEKA, demonstram a superioridade das abordagens em camadas. A arquitetura de Stacking superou o baseline do Random Forest, o que sugere que arquiteturas stacking são uma abordagem promissora para detecção de spam com mais robustez e precisão.Referências
Barracuda Networks (2025). 2025 email threats report: Key findings about the evolution of email-based threats. Relatório Técnico. Acessado em: 05 de agosto de 2025.
Bassiouni, M., Shafaey, M., and El-Dahshan, E.-S. (2018). Ham and spam e-mails classification using machine learning techniques. Journal of Applied Security Research, 13:315–331.
Charanarur, P., Jain, H., Gundu, S., Samanta, D., Singh Sengar, S., and Hewage, C. (2023). Machine-learning-based spam mail detector. SN Computer Science, 4.
Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA Workbench. Online Appendix for ”Data Mining: Practical Machine Learning Tools and Techniques”, Fourth Edition.
Hopkins, Mark, R.-E. F. G. and Suermondt, J. (1999). Spambase. UCI Machine Learning Repository.
Zhang, Chenwei (2025). Enhancing spam filtering: A comparative study of modern advanced machine learning techniques. ITM Web Conf., 70:04013.
Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, 1st edition.
Bassiouni, M., Shafaey, M., and El-Dahshan, E.-S. (2018). Ham and spam e-mails classification using machine learning techniques. Journal of Applied Security Research, 13:315–331.
Charanarur, P., Jain, H., Gundu, S., Samanta, D., Singh Sengar, S., and Hewage, C. (2023). Machine-learning-based spam mail detector. SN Computer Science, 4.
Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA Workbench. Online Appendix for ”Data Mining: Practical Machine Learning Tools and Techniques”, Fourth Edition.
Hopkins, Mark, R.-E. F. G. and Suermondt, J. (1999). Spambase. UCI Machine Learning Repository.
Zhang, Chenwei (2025). Enhancing spam filtering: A comparative study of modern advanced machine learning techniques. ITM Web Conf., 70:04013.
Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, 1st edition.
Publicado
12/11/2025
Como Citar
SILVA, Lucas Marchesan da; STIEGEMEIER, Gabriel; OLIVEIRA, Rafaela Savian Colvero de; HENKE, Marcia.
Análise de Métodos de Ensemble Learning para Detecção de Spam. In: ESCOLA REGIONAL DE APRENDIZADO DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL DA REGIÃO SUL (ERAMIA-RS), 1. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 188-191.
DOI: https://doi.org/10.5753/eramiars.2025.16235.