Predicting Hardware Resource Allocation of MVAU Modules in FINN-Generated FPGA Accelerators
Resumo
We propose a method to predict hardware resource allocation of the Matrix Vector Activation Unit (MVAU) in FPGA-based neural network accelerators generated with the FINN framework. A dataset built from synthesis results includes architectural parameters and utilization of LUTs, FFs, RAMBs, and DSPs. Three regression models were evaluated via 10-fold cross-validation. All achieved average R2 above 0.99, with XGBoost yielding the lowest MSE and MAE. Feature importance analysis showed that the Number of Processing Elements and RTL implementation dominate predictions, together contributing nearly 69%. The approach enables accurate and practical resource estimation to support efficient FPGA accelerator design.Referências
Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, M., and Nemani, R. (2015). DeepSat: A learning framework for satellite imagery. In Proc. 23rd Int. Conf. Advances in Geographic Information Systems, Seattle, Washington. DOI: 10.1145/2820783.2820816.
Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., and Marr, D. (2016). Accelerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic. In 2016 International Conference on Field-Programmable Technology (FPT), pages 77–84.
Pappalardo, A., Franco, G., Colbert, I., et al. (2024). Xilinx/Brevitas.
Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M., and Vissers, K. (2017). FINN: A framework for fast, scalable binarized neural network inference. In Proc. 2017 ACM/SIGDA International Symp. on Field-Programmable Gate Arrays, FPGA ’17, page 65–74, New York, NY, USA. ACM. DOI: 10.1145/3020078.3021744.
Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., and Marr, D. (2016). Accelerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic. In 2016 International Conference on Field-Programmable Technology (FPT), pages 77–84.
Pappalardo, A., Franco, G., Colbert, I., et al. (2024). Xilinx/Brevitas.
Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M., and Vissers, K. (2017). FINN: A framework for fast, scalable binarized neural network inference. In Proc. 2017 ACM/SIGDA International Symp. on Field-Programmable Gate Arrays, FPGA ’17, page 65–74, New York, NY, USA. ACM. DOI: 10.1145/3020078.3021744.
Publicado
12/11/2025
Como Citar
AREND, Beatriz Aline; ELY, Arthur Ferreira; KASTENSMIDT, Fernanda Lima; RECAMONDE-MENDOZA, Mariana.
Predicting Hardware Resource Allocation of MVAU Modules in FINN-Generated FPGA Accelerators. In: ESCOLA REGIONAL DE APRENDIZADO DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL DA REGIÃO SUL (ERAMIA-RS), 1. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 308-311.
DOI: https://doi.org/10.5753/eramiars.2025.16671.