EasyMark: Semiautomatic Image Annotation Tool

  • Samuel S. Vargas UFSM
  • João P. S. dos Santos UFSM
  • Thiago L. T. da Silveira UFSM
  • Gabriel M. Lunardi UFSM
  • Adriano Q. de Oliveira UFSM

Resumo


Image annotation tools are indispensable in this era of rapid Artificial Intelligence (AI) development, where image inference systems can be applied in most fields to aid professionals in several tasks. However, the current solutions are found to be lacking in multiple areas, including access, availability, security, and trust. For these reasons, this project aims to develop EasyMark, an image annotation tool designed to address these pressing issues, aiming for the safety and privacy of its users. At its current state, EasyMark is capable of manually and automatically annotating image folders, while remaining fully offline and open-source.

Referências

Aleid, A., Alhussaini, K., Alanazi, R., Altwaimi, M., Altwijri, O., and Saad, A. S. (2023). Artificial intelligence approach for early detection of brain tumors using mri images. Applied Sciences, 13(6).

Barlow, T. (2018). VoTT. [link]. Acessed on: 2025-08-22.

Chintalapati, B., Precht, A., Hanra, S., Laufer, R., Liwicki, M., and Eickhoff, J. (2025). Opportunities and challenges of on-board ai-based image recognition for small satellite earth observation missions. Advances in Space Research, 75(9):6734–6751. Science and applied research with small satellites.

Dutta, A. and Zisserman, A. (2019). The via annotation software for images, audio and video. In MM ’19: Proceedings of the 27th ACM International Conference on Multimedia, MM ’19, pages 2276–2279, New York, NY, USA. Association for Computing Machinery.

Dwyer, B. and Nelson, J. (2020). Roboflow. [link]. Acessed on: 2025-08-21.

Jiménez-Bravo, D. M., Álvaro Lozano Murciego, Sales Mendes, A., Sánchez San Blás, H., and Bajo, J. (2022). Multi-object tracking in traffic environments: A systematic literature review. Neurocomputing, 494:43–55.

Kawamura, R. (2017). Rectlabel. [link]. Acessed on: 2025-08-22.

Manovich, N. (2018). Computer vision annotation tool (cvat). [link]. Acessed on: 2025-08-21.

Rizzoli, A. and Edwardsson, S. (2018). V7 darwin. [link]. Acessed on: 2025-08-21.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: A database and web-based tool for image annotation. International Journal of Computer Vision, 77(1):157–173.

Sainsbury-Martinez, F., Tremblin, P., Mancip, M., Donfack, S., Honore, E., and Bourenane, M. (2023). Characterizing the atmospheric dynamics of hd 209458b-like hot jupiters using ai-driven image recognition/categorization. The Astrophysical Journal, 958(1):68.

Sharma, M., Rieger, B., and Rasmuson, D. (2018). Labelbox. [link]. Acessed on: 2025-08-21.

Tzutalin (2015). Labelimg. [link]. Acessed on: 2025-08-21.

Wang, A. (2016). Scale AI. [link]. Acessed on: 2025-08-22.
Publicado
12/11/2025
VARGAS, Samuel S.; SANTOS, João P. S. dos; SILVEIRA, Thiago L. T. da; LUNARDI, Gabriel M.; OLIVEIRA, Adriano Q. de. EasyMark: Semiautomatic Image Annotation Tool. In: ESCOLA REGIONAL DE APRENDIZADO DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL DA REGIÃO SUL (ERAMIA-RS), 1. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 384-387. DOI: https://doi.org/10.5753/eramiars.2025.16754.