Evaluating Hyperparameter Optimization in Machine Learning Algorithms for Cancer Driver Gene Classification

  • Ana Laura Schardosim UFRGS
  • Kamille Konarzewski UFRGS
  • Renan Soares de Andrades UFRGS-HCPA
  • Mariana Recamonde-Mendoza UFRGS-HCPA

Resumo


Cancer driver genes (CDGs) play a central role in tumorigenesis and represent important targets for diagnosis and therapy. In this study, we evaluate the impact of hyperparameter optimization on the predictive performance of traditional machine learning algorithms using multi-omics data. We perform systematic searches across different configurations to identify the most effective settings for CDG classification. Our results show that optimized models consistently outperform their default counterparts, particularly in recall and precision-recall metrics, with ensemble methods showing the most pronounced gains. These findings indicate that traditional algorithms, when carefully tuned, can represent promising approaches for identifying CDGs from genomics data.

Referências

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6):394–424.

Schulte-Sasse, R., Budach, S., Hnisz, D., and Marsico, A. (2021). Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nature Machine Intelligence, 3(6):513–526.

Stratton, M. R., Campbell, P. J., and Futreal, P. A. (2009). The cancer genome. Nature, 458(7239):719–724.

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., and Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339(6127):1546–1558.
Publicado
12/11/2025
SCHARDOSIM, Ana Laura; KONARZEWSKI, Kamille; ANDRADES, Renan Soares de; RECAMONDE-MENDOZA, Mariana. Evaluating Hyperparameter Optimization in Machine Learning Algorithms for Cancer Driver Gene Classification. In: ESCOLA REGIONAL DE APRENDIZADO DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL DA REGIÃO SUL (ERAMIA-RS), 1. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 400-403. DOI: https://doi.org/10.5753/eramiars.2025.16761.