Uso malicioso de Deepfakes em ambientes IoT: Um mapeamento sistemático sobre ameaças, vetores e estratégias de mitigação
Resumo
Contexto: A crescente integração de IA e IoT tem viabilizado ambientes inteligentes, mas também expandido a superfície de ataque cibernético com ameaças como os deepfakes. Esses conteúdos sintéticos conseguem enganar sistemas de reconhecimento facial, autenticação por voz e vigilância em tempo real. Objetivo: Este trabalho mapeia sistematicamente o uso malicioso de deepfakes em ambientes IoT, identificando vetores de ataque, sensores vulneráveis e técnicas de mitigação presentes na literatura. Método: A pesquisa seguiu um mapeamento sistemático com buscas nas bases IEEE Xplore e Scopus. De 85 estudos iniciais, 16 foram selecionados e analisados com base em três questões de pesquisa sobre ameaças, vulnerabilidades e soluções. Resultados: A análise revelou que sistemas de autenticação facial e vocal são os mais impactados. Os principais vetores envolvem falsificação de rosto, clonagem de voz e manipulação de vídeo ao vivo. Técnicas como CNN, blockchain, Redes Neurais Gráficas (GNN) e detecção multimodal (Wi-Fi + vídeo) foram identificadas como eficazes na mitigação em ambientes IoT. Conclusões: Deepfakes representam uma ameaça real e crescente à segurança de dispositivos IoT. Modelos leves e robustos de detecção, aliados a estruturas biométricas e mecanismos criptográficos, são essenciais para enfrentar essas ameaças em tempo real e em dispositivos com recursos limitados.Referências
Bethu, S. and Erukala, S. B. (2025). Blockchain-enhanced secure guard: a deep q network framework for robust iot surveillance person detection. Cluster Computing, 28(4). Cited by: 0.
Bethu, S., Trupthi, M., Mandala, S. K., Karimunnisa, S., and Banu, A. (2024). Ai-iot enabled surveillance security: Deepfake detection and person re-identification strategies. International Journal of Advanced Computer Science and Applications, 15(7):1013 – 1022. Cited by: 1; All Open Access, Gold Open Access.
Eidmum, M. Z. A., Muiz, B., and Saha, S. (2025). Enhancing fake face detection with meta-learning and ensemble methods. International Journal of Computing and Digital Systems, 18(1). Cited by: 0.
Fang, X., Liu, J., Chen, Y., Han, J., Ren, K., and Chen, G. (2023). Nowhere to hide: Detecting live video forgery via vision-wifi silhouette correspondence. volume 2023-May. Cited by: 3.
Frolov, D. B., Makhaev, D. D., and Shishkarev, V. V. (2022). Deepfakes and information security issues. In 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (ITQMIS), pages 147–150.
Javed, A., Malik, K. M., Malik, H., and Irtaza, A. (2022). Voice spoofing detector: A unified anti-spoofing framework. Expert Systems with Applications, 198. Cited by: 29; All Open Access, Bronze Open Access.
Karathanasis, A., Violos, J., and Kompatsiaris, I. (2025). A comparative analysis of compression and transfer learning techniques in deepfake detection models. Mathematics, 13(5). Cited by: 0; All Open Access, Gold Open Access.
Liu, J., Fang, X., Chen, Y., Yuan, J., Yu, G., and Han, J. (2025). Real-time video forgery detection via vision-wifi silhouette correspondence. IEEE Transactions on Mobile Computing, 24(3):1585–1601.
Mitra, A., Bigioi, D., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2022). Iface 1.1: A proof-of-concept of a facial authentication based digital id for smart cities. IEEE Access, 10:71791 – 71804. Cited by: 11; All Open Access, Gold Open Access.
Mitra, A., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2021a). Detection of deep-morphed deepfake images to make robust automatic facial recognition systems. page 149 – 154. Cited by: 12.
Mitra, A., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2021b). iface: A deepfake resilient digital identification framework for smart cities. In 2021 IEEE International Symposium on Smart Electronic Systems (iSES), pages 361–366.
Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64:1–18.
Samrouth, K., El Housseini, P., and Deforges, O. (2025). Siamese network-based detection of deepfake impersonation attacks with a person of interest approach. ACM Transactions on Multimedia Computing, Communications and Applications, 21(3). Cited by: 0.
Sisson, E. S. and Puckett, S. C. (2025). Securing digital media in the age of ai and deepfakes: A hardware-based solution. page 1171 – 1176. Cited by: 0.
Xu, J., Lin, W., Fan, W., Chen, J., Li, K., Liu, X., Xu, G., Yi, S., and Gan, J. (2024). A graph neural network model for live face anti-spoofing detection camera systems. IEEE Internet of Things Journal, 11(15):25720–25730.
Zhang, G., Gao, M., Li, Q., Guo, S., and Jeon, G. (2024). Detecting sequential deepfake manipulation via spectral transformer with pyramid attention in consumer iot. IEEE Transactions on Consumer Electronics, pages 1–1.
Zhou, L., Ma, C., Wang, Z., Zhang, Y., Shi, X., and Wu, L. (2024). Robust frame-level detection for deepfake videos with lightweight bayesian inference weighting. IEEE Internet of Things Journal, 11(7):13018–13028.
Bethu, S., Trupthi, M., Mandala, S. K., Karimunnisa, S., and Banu, A. (2024). Ai-iot enabled surveillance security: Deepfake detection and person re-identification strategies. International Journal of Advanced Computer Science and Applications, 15(7):1013 – 1022. Cited by: 1; All Open Access, Gold Open Access.
Eidmum, M. Z. A., Muiz, B., and Saha, S. (2025). Enhancing fake face detection with meta-learning and ensemble methods. International Journal of Computing and Digital Systems, 18(1). Cited by: 0.
Fang, X., Liu, J., Chen, Y., Han, J., Ren, K., and Chen, G. (2023). Nowhere to hide: Detecting live video forgery via vision-wifi silhouette correspondence. volume 2023-May. Cited by: 3.
Frolov, D. B., Makhaev, D. D., and Shishkarev, V. V. (2022). Deepfakes and information security issues. In 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (ITQMIS), pages 147–150.
Javed, A., Malik, K. M., Malik, H., and Irtaza, A. (2022). Voice spoofing detector: A unified anti-spoofing framework. Expert Systems with Applications, 198. Cited by: 29; All Open Access, Bronze Open Access.
Karathanasis, A., Violos, J., and Kompatsiaris, I. (2025). A comparative analysis of compression and transfer learning techniques in deepfake detection models. Mathematics, 13(5). Cited by: 0; All Open Access, Gold Open Access.
Liu, J., Fang, X., Chen, Y., Yuan, J., Yu, G., and Han, J. (2025). Real-time video forgery detection via vision-wifi silhouette correspondence. IEEE Transactions on Mobile Computing, 24(3):1585–1601.
Mitra, A., Bigioi, D., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2022). Iface 1.1: A proof-of-concept of a facial authentication based digital id for smart cities. IEEE Access, 10:71791 – 71804. Cited by: 11; All Open Access, Gold Open Access.
Mitra, A., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2021a). Detection of deep-morphed deepfake images to make robust automatic facial recognition systems. page 149 – 154. Cited by: 12.
Mitra, A., Mohanty, S. P., Corcoran, P., and Kougianos, E. (2021b). iface: A deepfake resilient digital identification framework for smart cities. In 2021 IEEE International Symposium on Smart Electronic Systems (iSES), pages 361–366.
Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64:1–18.
Samrouth, K., El Housseini, P., and Deforges, O. (2025). Siamese network-based detection of deepfake impersonation attacks with a person of interest approach. ACM Transactions on Multimedia Computing, Communications and Applications, 21(3). Cited by: 0.
Sisson, E. S. and Puckett, S. C. (2025). Securing digital media in the age of ai and deepfakes: A hardware-based solution. page 1171 – 1176. Cited by: 0.
Xu, J., Lin, W., Fan, W., Chen, J., Li, K., Liu, X., Xu, G., Yi, S., and Gan, J. (2024). A graph neural network model for live face anti-spoofing detection camera systems. IEEE Internet of Things Journal, 11(15):25720–25730.
Zhang, G., Gao, M., Li, Q., Guo, S., and Jeon, G. (2024). Detecting sequential deepfake manipulation via spectral transformer with pyramid attention in consumer iot. IEEE Transactions on Consumer Electronics, pages 1–1.
Zhou, L., Ma, C., Wang, Z., Zhang, Y., Shi, X., and Wu, L. (2024). Robust frame-level detection for deepfake videos with lightweight bayesian inference weighting. IEEE Internet of Things Journal, 11(7):13018–13028.
Publicado
12/08/2025
Como Citar
SANTOS, Almeida Italo M.; SANTOS, Marcos Vinícius de S.; M. JUNIOR, Rubens de Souza.
Uso malicioso de Deepfakes em ambientes IoT: Um mapeamento sistemático sobre ameaças, vetores e estratégias de mitigação. In: ESCOLA REGIONAL DE COMPUTAÇÃO BAHIA, ALAGOAS E SERGIPE (ERBASE), 25. , 2025, Lagarto/SE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 192-200.
DOI: https://doi.org/10.5753/erbase.2025.13700.
