Coleta de Dados do Instagram sobre Ocorrências de Caravelas-Portuguesas na Costa Brasileira
Abstract
Social media generate data in large volumes, which are freely and easily accessible, renewable, because they are generated continuously and in real time, and are long-lasting. The objective of this work is to collect posts from Instagram in order to map the spatio-temporal distribution of sightings of the Portuguese man of war (cnidary physalia physalis) on the Brazilian coast. The amount of collected posts indicates that Instagram is a potential data source for obtaining this type of data. Future work involves determining the veracity and scope of the collected information and developing an automated process for periodically extracting new posts.
References
V. Barve. Discovering and developing primary biodiversity data from social networking sites: A novel approach. Ecological Informatics, 24:194-199, 2014. ISSN 1574-9541. doi: https://doi.org/10.1016/j.ecoinf.2014.08.008. URL [link].
BigDataCloud. BigDataCloud. [link], 2023. Acessado em 03/03/2023.
J. Constine. Instagram kills off feed reading apps. Tech Crunch, 2015. URL [link].
J. Constine. Instagram suddenly chokes off developers as facebook chases privacy. Tech Crunch, 2018. URL [link].
E. Di Minin, H. Tenkanen, and T. Toivonen. Prospects and challenges for social media data in conservation science. Frontiers in Environmental Science, 3, 09 2015. doi: 10.3389/fenvs.2015.00063.
L. S. do Nascimento, C. S. Hara, M. N. Junior, and M. Noernberg. Instagram como fonte de dados alternativa no monitoramento da caravelaportuguesa (physalia physalis, cnidaria). In Livro de Memórias do IV SUSTENTARE e VII WIPIS: Workshop internancional de Sustentabilidade, Indicadores e Gestão de Recursos Hídricos. Even3, 2022. doi: 10.29327/sustentare_wipis_2022.584935.
T. Edwards, C. B. Jones, and P. Corcoran. Identifying wildlife observations on twitter. Ecological Informatics, 67:101500, 2022. ISSN 1574-9541. doi: https://doi.org/10.1016/j.ecoinf.2021.101500. URL [link].
A. Ghermandi and M. Sinclair. Passive crowdsourcing of social media in environmental research: A systematic map. Global Environmental Change, 55:36-47, 2019. ISSN 0959-3780. doi: https://doi.org/10.1016/j.gloenvcha.2019.02.003. URL [link].
U. Gunter and I. Önder. An exploratory analysis of geotagged photos from instagram for residents of and visitors to vienna. Journal of Hospitality & Tourism Research, 45(2): 373-398, 2021.
A. Hausmann, T. Toivonen, R. Slotow, H. Tenkanen, A. Moilanen, V. Heikinheimo, and E. Di Minin. Social media data can be used to understand tourists' preferences for nature-based experiences in protected areas. Conservation Letters, 11(1): e12343, 2018. doi: https://doi.org/10.1111/conl.12343. URL [link].
A. Himawan, A. Priadana, and A. Murdiyanto. Implementation of web scraping to build a web-based instagram account data downloader application. IJID (International Journal on Informatics for Development), 9(2):59-65, Dec. 2020. doi: 10.14421/ijid.2020.09201. URL [link].
Instaloader. Instaloader. [link], 2023. Acessado em 03/03/2023.
I. Jarić, R. A. Correia, B. W. Brook, J. C. Buettel, F. Courchamp, E. Di Minin, J. A. Firth, K. J. Gaston, P. Jepson, G. Kalinkat, R. Ladle, A. Soriano-Redondo, A. T. Souza, and U. Roll. iecology: Harnessing large online resources to generate ecological insights. Trends in Ecology Evolution, 35(7):630-639, 2020. ISSN 0169-5347. doi: https://doi.org/10.1016/j.tree.2020.03.003. URL [link].
M. Kovačić, J. P. Renoult, R. Pillon, M. Bilecenoglu, F. Tiralongo, S. V. Bogorodsky, S. Engin, O. Kovtun, P. Louisy, R. A. Patzner, S. B.-S. Rothman, A. Soldo, and M. B. Yokes. The delimitation of geographic distributions of gobius bucchichi and gobius incognitus (teleostei: Gobiidae). Journal of Marine Science and Engineering, 11(3), 2023. ISSN 2077-1312. doi: 10.3390/jmse11030516. URL [link].
Langdetect. Langdetect. [link], 2023. Acessado em 03/03/2023.
A. McCrow-Young. Approaching instagram data: reflections on accessing, archiving and anonymising visual social media. Communication Research and Practice, 7(1):21-34, 2021. doi: 10.1080/22041451.2020.1847820. URL https://doi.org/10.1080/22041451.2020.1847820.
P. Milev et al. Conceptual approach for development of web scraping application for tracking information. Economic Alternatives, 3:475-485, 2017.
F. Paolo, F. P. J. Albarico, P. Jee, B. Albarico, C. Peña, M. Salva, and C.-D. Dong. Using social media platforms to study the ecology and exploitation of mud lobsters in the philippines. Philippine Journal of Science, 150, 11 2021. doi: 10.56899/150.6B.20.
L. Reips and C. Hara. Integração e rotulação automatizada de dados sobre o cnidário physalia physalis, usando a geolocalização como referência. In Anais Estendidos do XXXVII Simpósio Brasileiro de Bancos de Dados, pages 105-111, Porto Alegre, RS, Brasil, 2022. SBC. doi: 10.5753/sbbd_estendido.2022.21851. URL [link].
J. Rizgalla. Can social media platforms play a role in sea turtle conservation efforts in libya in times of war and political/economic instability? 27:1-23, 05 2021.
H. Rocha and C. Hara. Identificação de ocorrências do cnidário physalia physalis em dados extraídos de mídias sociais. In Anais Estendidos do XXXVII Simpósio Brasileiro de Bancos de Dados, pages 119-125, Porto Alegre, RS, Brasil, 2022. SBC. doi: 10.5753/sbbd_estendido.2022.21853. URL [link].
T. Toivonen, V. Heikinheimo, C. Fink, A. Hausmann, T. Hiippala, O. Järv, H. Tenkanen, and E. Di Minin. Social media data for conservation science: A methodological overview. Biological Conservation, 233:298-315, 2019. ISSN 0006-3207. doi: https://doi.org/10.1016/j.biocon.2019.01.023. URL [link].
