Generation-to-Storage Data Framework for Large-Scale Carbon Sequestration Simulation Datasets
Resumo
Carbon sequestration is a promising CO2 removal technology, particularly for the oil and gas industry. Consequently, monitoring the CO2 injected into deep geological formations is crucial for containment and environmental safety. This paper presents an application of data engineering principles to managing large datasets from numerical flow simulations of underground CO2 injection. By integrating data lifecycle phases with a Medallion-like architecture, the proposed framework delivers consumable assets for physics-informed machine learning experiments. One expects it provides insights into gas plume motion tracking, supporting reservoir monitoring in the post-injection phase of Carbon Capture and Storage (CCS) programs.Referências
da Silva, A. C., Lustosa, H. L. S., da Silva, D. N. R., Porto, F. A. M., and Valduriez, P. (2020). Savime: An array dbms for simulation analysis and ml models prediction. Journal of Information and Data Management, 11(3).
Eaton, J. W., Bateman, D., Hauberg, S., and Wehbring, R. (2023). GNU Octave version 8.4.0 manual: a high-level interactive language for numerical computations.
GCCSI (2024). Global status of ccs 2024: Collaborating for a net-zero future. Technical report, Global CCS Institute.
Lie, K.-A., Nilsen, H. M., Andersen, O., and Møyner, O. (2016). A simulation workflow for large-scale co2 storage in the norwegian north sea. Computational Geosciences, 20(3):607–622.
Shokouhi, P., Kumar, V., Prathipati, S., Hosseini, S. A., Giles, C. L., and Kifer, D. (2021). Physics-informed deep learning for prediction of co2 storage site response. Journal of Contaminant Hydrology, 241:103835.
Wang, Y.-W., Dai, Z.-X., Wang, G.-S., Chen, L., Xia, Y.-Z., and Zhou, Y.-H. (2024). A hybrid physics-informed data-driven neural network for co2 storage in depleted shale reservoirs. Petroleum Science, 21(1):286–301.
Weber, N., de Oliveira, S. B., Cavallari, A., Morbach, I., Tassinari, C. C., and Meneghini, J. (2024). Assessing the potential for co2 storage in saline aquifers in brazil: Challenges and opportunities. Greenhouse Gases: Science and Technology, 14(2):319–329.
Eaton, J. W., Bateman, D., Hauberg, S., and Wehbring, R. (2023). GNU Octave version 8.4.0 manual: a high-level interactive language for numerical computations.
GCCSI (2024). Global status of ccs 2024: Collaborating for a net-zero future. Technical report, Global CCS Institute.
Lie, K.-A., Nilsen, H. M., Andersen, O., and Møyner, O. (2016). A simulation workflow for large-scale co2 storage in the norwegian north sea. Computational Geosciences, 20(3):607–622.
Shokouhi, P., Kumar, V., Prathipati, S., Hosseini, S. A., Giles, C. L., and Kifer, D. (2021). Physics-informed deep learning for prediction of co2 storage site response. Journal of Contaminant Hydrology, 241:103835.
Wang, Y.-W., Dai, Z.-X., Wang, G.-S., Chen, L., Xia, Y.-Z., and Zhou, Y.-H. (2024). A hybrid physics-informed data-driven neural network for co2 storage in depleted shale reservoirs. Petroleum Science, 21(1):286–301.
Weber, N., de Oliveira, S. B., Cavallari, A., Morbach, I., Tassinari, C. C., and Meneghini, J. (2024). Assessing the potential for co2 storage in saline aquifers in brazil: Challenges and opportunities. Greenhouse Gases: Science and Technology, 14(2):319–329.
Publicado
23/04/2025
Como Citar
SANTOS, Luiz Fernando C. dos; OLIVEIRA, Gustavo P..
Generation-to-Storage Data Framework for Large-Scale Carbon Sequestration Simulation Datasets. In: ESCOLA REGIONAL DE BANCO DE DADOS (ERBD), 20. , 2025, Florianópolis/SC.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 149-152.
ISSN 2595-413X.
DOI: https://doi.org/10.5753/erbd.2025.7365.
