Revisão Sistemática sobre Machine Learning Aplicada a Bioacústica utilizando o Método PRISMA

  • Luiz E. R. Martins UFMT
  • Virgínia A. dos Santos UFMT
  • Allan G. de Oliveira UFMT
  • Thiago M. Ventura UFMT
  • Nielsen Cassiano Simões UFMT

Resumo


O uso da técnica mais adequada é crucial em qualquer processo Aprendizagem de Máquina. Na bioacústica, devido à complexidade dos dados muitas técnicas tem sido aplicadas e desenvolvidas. Nesse contexto, esse trabalho apresenta a revisão sistemática realizada utilizando a metodologia PRISMA para Bioacústica no monitoramento ambiental por meio de vocalização de pássaros. A revisão demonstrou que as técnicas de Spiking Neural Network, Convolutional Neural Network e Residual Neural Network ganharam destaque nos últimos anos.

Palavras-chave: bioacústica, redes neurais, aprendizado de máquina, classificação, monitoramento de pássaros

Referências

Alghamdi, A., Mehtab, T., Iqbal, R., Leeza, M., Islam, N., Hamdi, M., and Shaikh, A. (2021). Automatic classification of monosyllabic and multisyllabic birds using pdhf. Electronics, 10(5).

B. T. Padovese, L. R. P. (2019). Machine learning for identifying an endangered brazilian psittacidae species. Journal of Environmental Informatics Letters.

de Oliveira, A. G., Ventura, T. M., Ganchev, T. D., Silva, L. N., Marques, M. I., and Schuchmann, K.-L. (2020). Speeding up training of automated bird recognizers by data reduction of audio features. PeerJ, 8:e8407.

Ferreira, A. (2011). Assessment of heavy metals in egretta thula: case study: Coroa grande mangrove, sepetiba bay, rio de janeiro, brazil. Brazilian Journal of Biology, 71(1):77–82.

Hidayat, A. A., Cenggoro, T. W., and Pardamean, B. (2021). Convolutional neural networks for scops owl sound classification. Procedia Computer Science, 179:81–87. 5th International Conference on Computer Science and Computational Intelligence 2020.

Hu, S., Chu, Y., Wen, Z., Zhou, G., Sun, Y., and Chen, A. (2023). Deep learning bird song recognition based on mff-scsenet. Ecological Indicators, 154:110844.

Jing, L., Liu, B., Choi, J., Janin, A., Bernd, J., Mahoney, M. W., and Friedland, G. (2016). A discriminative and compact audio representation for event detection. In Proceedings of the 24th ACM International Conference on Multimedia, MM ’16, page 57–61, New York, NY, USA. Association for Computing Machinery.

Kvsn, R. R., Montgomery, J., Garg, S., and Charleston, M. (2020). Bioacoustics data analysis – a taxonomy, survey and open challenges. IEEE Access, 8:57684–57708.

Maegawa, Y., Ushigome, Y., Suzuki, M., Taguchi, K., Kobayashi, K., Haga, C., and Matsui, T. (2021). A new survey method using convolutional neural networks for automatic classification of bird calls. Ecological Informatics, 61:101164.

Mohanty, R., Bhuyan, H. K., Pani, S. K., Ravi, V., and Krichen, M. (2023). Bird species recognition using spiking neural network along with distance based fuzzy co-clustering. International Journal of Speech Technology, pages 1–14.

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. BMJ, 339.

Tivarekar, R. P., Chavan, V. D., Shete, S. A., and Vartak, A. (2018). Audio based bird species recognition using naÏve bayes algorithm. International Journal of modern Trends in Engineering and Research (IJMTER).

Weerasena, H., Jayawardhana, M., Egodage, D., Fernando, H., Sooriyaarachchi, S., Gamage, C., and Kottege, N. (2018). Continuous automatic bioacoustics monitoring of bird calls with local processing on node level. In TENCON 2018 - 2018 IEEE Region 10 Conference, pages 0235–0239.

Xiao, H., Liu, D., Chen, K., and Zhu, M. (2022). Amresnet: An automatic recognition model of bird sounds in real environment. Applied Acoustics, 201:109121.

Xie, J., Yang, J., Ding, C., and Li, W. (2020). High accuracy individual identification model of crested ibis (nipponia nippon) based on autoencoder with self-attention. IEEE Access, 8:41062–41070.

Yang, F., Jiang, Y., and Xu, Y. (2022). Design of bird sound recognition model based on lightweight. IEEE Access, 10:85189–85198.

Zhao, Z., hua Zhang, S., yong Xu, Z., Bellisario, K., hua Dai, N., Omrani, H., and Pijanowski, B. C. (2017). Automated bird acoustic event detection and robust species classification. Ecological Informatics, 39:99–108.
Publicado
28/11/2023
MARTINS, Luiz E. R.; DOS SANTOS, Virgínia A.; DE OLIVEIRA, Allan G.; VENTURA, Thiago M.; SIMÕES, Nielsen Cassiano. Revisão Sistemática sobre Machine Learning Aplicada a Bioacústica utilizando o Método PRISMA. In: ESCOLA REGIONAL DE INFORMÁTICA DE MATO GROSSO (ERI-MT), 12. , 2023, Cuiabá/MT. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 251-255. ISSN 2447-5386. DOI: https://doi.org/10.5753/eri-mt.2023.236622.