Classificação Morfológica de Galáxias Por Meio de Redes Neurais

  • Matheus Silva Universidade Federal do Mato Grosso
  • Thiago Ventura Universidade Federal de Mato Grosso

Resumo


This paper proposes the development of a convolutional neural network for the morphological classification of galaxies through optical images, classifying them into six distinct classes based on the Hubble Tuning Fork model. In order to automate the mass identification and separation of the huge volume of data generated in recent astronomical observatories, deep learning and data augmentation techniques are used to generate increased data variation and consequently improve network accuracy. Our model achieved an average precision of 88%.

Referências

Bell , C. , Hey , T. , and Szalay , A. ( 2009 ). Beyond the data deluge (computer science) . Science (New York, N.Y.), 323 : 1297 - 8 .

den Bergh , V. ( 1998 ). Galaxy Morphology and Classification . University of Victoria, British Columbia.

Hubble , E. P. ( 1926 ). Extragalactic nebulae . Astrophysical Journal.

Kaggle ( 2014 ). Galaxy zoo - the galaxy challenge . https://www .kaggle.com/c/galaxyzoo-the-galaxy-challenge. Acessado: 2019 - 09 - 16 .

Lintott, Schawinski, B. S. L. T. E. M. R. C. N. M. J. R. A. S. D. A. P. M. J. V. ( 2010 ). Galaxy zoo 1: data release of morphological classifications for nearly 900 000 galaxies . Monthly Notices of the Royal Astronomical Society , 410 : 166 - 178 .

Lintott , C. J. , Schawinski , K. , Slosar , A. , Land , K. , Bamford , S. , Thomas , D. , Raddick , M. J. , Nichol , R. C. , Szalay , A. , Andreescu , D. , Murray , P. , and Vandenberg , J. ( 2008 ). Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey . Monthly Notices of the Royal Astronomical Society , 389 : 1179 - 1189 .

O. Lahav , A. Nairn , L. S. M. C. S.-L. ( 1996 ). Neural computation as a tool for galaxy classification: methods and examples . Monthly Notices of the Royal Astronomical Society , 283 : 207 - 221 .

Perez , L. and Wang , J. ( 2017 ). The effectiveness of data augmentation in image classification using deep learning . CoRR , abs/1712.04621.

Wu , C. , Wong , O. I. , Rudnick , L. , Shabala , S. S. , Alger , M. J. , Banfield , J. K. , Ong , C. S. , White , S. V. , Garon , A. F. , Norris , R. P. , Andernach , H. , Tate , J. , Lukic , V. , Tang , H. , Schawinski , K. , and Diakogiannis , F. I. ( 2018 ). Radio Galaxy Zoo: Claran - a deep learning classifier for radio morphologies . Monthly Notices of the Royal Astronomical Society , 482 ( 1 ): 1211 - 1230 .

Zhu , X.-P. , Dai , J.-M. , Bian , C.-J. , Chen , Y. , Chen , S. , and Hu , C. ( 2019 ). Galaxy morphology classification with deep convolutional neural networks . Astrophysics and Space Science , 364 ( 4 ): 55 .
Publicado
04/11/2019
Como Citar

Selecione um Formato
SILVA, Matheus; VENTURA, Thiago. Classificação Morfológica de Galáxias Por Meio de Redes Neurais. In: ESCOLA REGIONAL DE INFORMÁTICA DE MATO GROSSO (ERI-MT), 10. , 2019, Cuiabá. Os Anais da X Escola Regional de Informática de Mato Grosso. Porto Alegre: Sociedade Brasileira de Computação, nov. 2019 . p. 31-36. DOI: https://doi.org/10.5753/eri-mt.2019.8590.