Overview of Research on Machine Learning in Mental Health: A Brief Scoping Analysis
Abstract
This scoping study investigates the use of Machine Learning (ML) in Mental Health research using questionnaire data (2020-2024). Analyzing 28 articles from ACM and PubMed, the study reveals a growing trend in research and publications, prevalent use of Random Forest, and a focus on depression. A dichotomy in methodological approaches was observed: Computer Science researchers prioritize comparing algorithm performance, while Health researchers favor applying more interpretable models. ML application in Mental Health shows significant potential as a supplementary tool for professionals.
References
Kim, S.-S., Gil, M., and Min, E. J. (2023). “Machine learning models for predicting depression in Korean young employees.” Frontiers in Public Health, 11. DOI: 10.3389/fpubh.2023.1201054.
Ellouze, M., and Belguith, L. H. (2024). “Artificial Intelligence application for the analysis of personality traits and disorders in social media: A Survey.” ACM Trans. Asian Low-Resour. Lang. Inf. Process. Just Accepted (June 2024). DOI: 10.1145/3674971.
Makhmutova, M., Kainkaryam, R., Ferreira, M., Min, J., Jaggi, M., and Clay, I. (2021). “Prediction of self-reported depression scores using person-generated health data from a virtual 1-year mental health observational study.” In: Proceedings of the 2021 Workshop on Future of Digital Biomarkers (DigiBiom ’21). Association for Computing Machinery, New York, NY, USA, pp. 4–11. DOI: 10.1145/3469266.3469878.
D’Agostino, A., Garbazza, C., Malpetti, D., Azzimonti, L., Mangili, F., Stein, H.-C., del Giudice, R., Cicolin, A., Cirignotta, F., Marconi, M., for the “Life-ON” study group. (2024). “Optimal risk and diagnosis assessment strategies in perinatal depression: A machine learning approach from the life-ON study cohort.” Psychiatry Research, 332, 115687. DOI: 10.1016/j.psychres.2023.115687.
Su, Y., Ge, L., and Wei, G. (2024). “Random Forest Model Predicts Stress Level in a Sample of 18,403 College Students.” In: Proceedings of the 2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA ’24). Association for Computing Machinery, New York, NY, USA, pp. 588–593. DOI: 10.1145/3690407.3690507.
Chatterjee, A., Riegler, M. A., Johnson, M. S., Das, J., Pahari, N., Ramachandra, R., Ghosh, B., Saha, A., and Bajpai, R. (2024). “Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology.” Scientific Reports, 14, 24190. DOI: 10.1038/s41598-024-74539-6.
Carvalho, Y. M. (2019). “Do velho ao novo: a revisão de literatura como método de fazer ciência.” Revista Thema, 16(4), pp. 913–928. DOI: 10.15536/thema.V16.2019.913-928.1328.
Ghosh, S., Tripathi, K., Garg, A., Singh, D., Prasad, A., Bhavsar, A., and Dutt, V. (2024). “Predicting Stress among Students via Psychometric Assessments and Machine Learning.” In: Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA ’24). Association for Computing Machinery, New York, NY, USA, pp. 662–669. DOI: 10.1145/3652037.3663949.
Ellouze, M., and Belguith, L. H. (2024). “Artificial Intelligence application for the analysis of personality traits and disorders in social media: A Survey.” ACM Trans. Asian Low-Resour. Lang. Inf. Process. Just Accepted (June 2024). DOI: 10.1145/3674971.
Makhmutova, M., Kainkaryam, R., Ferreira, M., Min, J., Jaggi, M., and Clay, I. (2021). “Prediction of self-reported depression scores using person-generated health data from a virtual 1-year mental health observational study.” In: Proceedings of the 2021 Workshop on Future of Digital Biomarkers (DigiBiom ’21). Association for Computing Machinery, New York, NY, USA, pp. 4–11. DOI: 10.1145/3469266.3469878.
D’Agostino, A., Garbazza, C., Malpetti, D., Azzimonti, L., Mangili, F., Stein, H.-C., del Giudice, R., Cicolin, A., Cirignotta, F., Marconi, M., for the “Life-ON” study group. (2024). “Optimal risk and diagnosis assessment strategies in perinatal depression: A machine learning approach from the life-ON study cohort.” Psychiatry Research, 332, 115687. DOI: 10.1016/j.psychres.2023.115687.
Su, Y., Ge, L., and Wei, G. (2024). “Random Forest Model Predicts Stress Level in a Sample of 18,403 College Students.” In: Proceedings of the 2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA ’24). Association for Computing Machinery, New York, NY, USA, pp. 588–593. DOI: 10.1145/3690407.3690507.
Chatterjee, A., Riegler, M. A., Johnson, M. S., Das, J., Pahari, N., Ramachandra, R., Ghosh, B., Saha, A., and Bajpai, R. (2024). “Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology.” Scientific Reports, 14, 24190. DOI: 10.1038/s41598-024-74539-6.
Carvalho, Y. M. (2019). “Do velho ao novo: a revisão de literatura como método de fazer ciência.” Revista Thema, 16(4), pp. 913–928. DOI: 10.15536/thema.V16.2019.913-928.1328.
Ghosh, S., Tripathi, K., Garg, A., Singh, D., Prasad, A., Bhavsar, A., and Dutt, V. (2024). “Predicting Stress among Students via Psychometric Assessments and Machine Learning.” In: Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA ’24). Association for Computing Machinery, New York, NY, USA, pp. 662–669. DOI: 10.1145/3652037.3663949.
Published
2025-04-24
How to Cite
MOTA, Thalles Paul Leandro; MARTINS, Claudia Aparecida; GARCIA, Leonardo Arruda Vilela.
Overview of Research on Machine Learning in Mental Health: A Brief Scoping Analysis. In: REGIONAL SCHOOL OF INFORMATION SYSTEMS OF MATO GROSSO, 1. , 2025, Cuiabá/MT.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 149-158.
DOI: https://doi.org/10.5753/ersimt.2025.8009.
