BI-RADS Breast Tumor Classification Through Image Mining

  • Valesca J. S. da Silva Universidade do Estado do Rio Grande do Norte / Universidade Federal Rural do Semi-Árido
  • Mateus M. R. da Silva Universidade do Estado do Rio Grande do Norte
  • Marcelino P. S. Silva Universidade do Estado do Rio Grande do Norte
  • Joana R. C. Nogueira Universidade do Estado do Rio Grande do Norte

Resumo


In this article, a computer aided diagnostic system for BI-RADS classification of breast cancer is proposed. The approach involves image processing capabilities to extract features from tumors in mammography and image mining to classify them as BI-RADS 2, BI-RADS 3, BI-RADS 4C or BI-RADS 5. Images from the BCDR repository were used for the experiments. The results showed the efficacy of the proposed method, which classified tumors with considerable accuracy in four BI-RADS categories.

Palavras-chave: breast cancer, BI-RADS, data mining, machine learning

Referências

American Cancer Society. About breast cancer. https://www.cancer.org/cancer/breastcancer/about/what-is-breast-cancer.html, 2018. Data de acesso: 6 fev. 2019.

Breast Cancer Digital Repository. More about bcdr. https://bcdr.eu/information/about, 2019. Data de acesso: 13 fev. 2019.

Cruz, T., Cruz, T., and Santos, W. Detection and classification of lesions in mammographies using neural networks and morphological wavelets. IEEE Latin America Transactions 16 (3): 926– 932, 2018.

do Nascimento, J. H. R., da Silva, V. D., and Maciel, A. C. Acurácia dos achados mamográficos do câncer de mama: correlação da classificação BI-RADS e achados histológicos. Radiologia Brasileira 43 (2): 91–96, 2010.

Duarte, D. ACR BI-RADS: sistema de laudos e registro de dados de imagem da mama: Atlas de diagnóstico por imagem da mama. São Paulo: Colégio Brasileiro de Radiologia vol. 2, pp. 1–574, 2016.

Geller, B. M., Barlow, W. E., Ballard-Barbash, R., Ernster, V. L., Yankaskas, B. C., Sickles, E. A., Carney, P. A., Dignan, M. B., Rosenberg, R. D., Urban, N., et al. Use of the american college of radiology bi-rads to report on the mammographic evaluation of women with signs and symptoms of breast disease. Radiology 222 (2): 536–542, 2002.

Instituto Nacional de Câncer. Conceito e magnitude do câncer de mama. https://www.inca.gov.br/controle-do-cancer-de-mama/conceito-e-magnitude, 2019. Data de acesso: 6 fev. 2019.

Organização Pan-americana da Saúde. Folha informativa: Câncer. https://www.paho.org/bra.../index.php?option=comcontentview=articleid=5588:folhainformativa-cancerItemid=1094, 2018. Data de acesso: 8 fev. 2019.

Shan, J., Alam, S. K., Garra, B., Zhang, Y., and Ahmed, T. Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods. Ultrasound in medicine & biology 42 (4): 980–988, 2016.

Souto, L. P. M. Mineração de imagens para a classificação de tumores de mama. M.S. thesis, Universidade do Estado do Rio Grande do Norte. Universidade Federal Rural do Semi-Árido., 2014.

Souto, L. P. M., dos Santos, T. K., and Silva, M. P. S. Classification of breast tumors through image mining techniques. In Anais do XVIII Simpósio Brasileiro de Computação Aplicada à Saúde. SBC, 2018.
Publicado
07/10/2019
DA SILVA, Valesca J. S.; DA SILVA, Mateus M. R.; SILVA, Marcelino P. S.; NOGUEIRA, Joana R. C.. BI-RADS Breast Tumor Classification Through Image Mining. In: SYMPOSIUM ON KNOWLEDGE DISCOVERY, MINING AND LEARNING (KDMILE) , 2019, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 73-80. ISSN 2763-8944. DOI: https://doi.org/10.5753/kdmile.2019.8791.