Evaluation of the reliability of synthetic mobility models applied in vehicular networks

  • Maurício Silva UFOP
  • Ricardo Oliveira UFOP
  • André Aquino UFAL

Abstract


Evaluating applications and protocols for vehicular networks is a requirement before employing them in real environments. Generally, this evaluation takes place through simulations because it allows evaluations with low cost and on a large scale. However, for the simulations to produce realistic results, the simulators' mobility models must reproduce the observed behavior in real scenarios. In this work, we developed an epidemic routing algorithm for vehicular networks, and we compared the reliability of the results produced by a mobility model with the results produced in a real scenario. The results show that the mobility model does not reproduce real mobility, and consequently, the applications evaluated in synthetic scenarios do not present the same results when evaluated in real scenarios.

Keywords: Mobile computing, vehicular networks, vehicular mobility models

References

Behrisch, M., Erdmann, J., and Krajzewicz, D. (2010). Adding intermodality to the mi-croscopic simulation package sumo.MESM, pages 59–66.

Chowdhury, D., Santen, L., and Schadschneider, A. (2000). Statistical physics of vehicu-lar traffic and some related systems.Physics Reports, 329(4-6):199–329.

Eckhoff, D. and Sommer, C. (2015). Simulative performance evaluation of vehicularnetworks.Vehicular Communications and Networks: Architectures, Protocols, Opera-tion and Deployment, pages 255–274.

Fischer, H.-J. (2015).Standardization and Harmonization Activities Towards a GlobalC-ITS, pages 23–36. Springer International Publishing.

Gawron, C. (1998). An iterative algorithm to determine the dynamic user equilibrium in atraffic simulation model.International Journal of Modern Physics C, 9(03):393–407.

Harri, J., Filali, F., and Bonnet, C. (2009). Mobility models for vehicular ad hoc networks:a survey and taxonomy.IEEE Communications Surveys Tutorials, 11(4):19–41.

Kong, X., Xia, F., Ning, Z., Rahim, A., Cai, Y., Gao, Z., and Ma, J. (2018). Mobi-lity dataset generation for vehicular social networks based on floating car data.IEEETransactions on Vehicular Technology, 67(5):3874–3886.

Krajzewicz, D., Hertkorn, G., R ̈ossel, C., and Wagner, P. (2002). Sumo (simulation ofurban mobility)-an open-source traffic simulation. InProceedings of the 4th MiddleEast Symposium on Simulation and Modelling.

Krauß, S. (1998).Microscopic modeling of traffic flow: Investigation of collision freevehicle dynamics. PhD thesis, Dt. Zentrum f ̈ur Luft-und Raumfahrt eV, Abt.

Krauß, S., Wagner, P., and Gawron, C. (1996).Continuous limit of the nagel-schreckenberg model.Physical Review E, 54(4):3707.

Krauß, S., Wagner, P., and Gawron, C. (1997). Metastable states in a microscopic modelof traffic flow.Physical Review E, 55(5):5597.

Macedo, D. F., Oliveira, S., Teixeira, F. A., Aquino, A. L. L., and Oliveira, R. R. (2012).(CIA)2-ITS: Interconnecting mobile and ubiquitous devices for intelligent transporta-tion systems. InIEEE Pervasive Computing and Communication.

Moura, D. L. L., Cabral, R. S., Sales, T., and Aquino, A. L. L. (2018). An evolutionaryalgorithm for roadside unit deployment with betweenness centrality preprocessing.Fu-ture Generation Computer Systems, 88(1):776–784.

Naboulsi, D. and Fiore, M. (2017). Characterizing the instantaneous connectivity oflarge-scale urban vehicular networks.IEEE Transactions on Mobile Computing,16(5):1272–1286.

Nagel, K., Wagner, P., and Woesler, R. (2003). Still flowing: Approaches to traffic flowand traffic jam modeling.Operations research, 51(5):681–710.

Rahim, A., Kong, X., Xia, F., Ning, Z., Ullah, N., Wang, J., and Das, S. K. (2018).Vehicular social networks: A survey.Pervasive and Mobile Computing, 43:96 – 113.

Silva, M. J., Cavalcante, T. S., Rosso, O. A., Rodrigues, J. J., Oliveira, R. A., and Aquino,A. L. (2019). Study about vehicles velocities using time causal information theoryquantifiers.Ad Hoc Networks, 89:22 – 34.

Silva, M. J., Silva, G. I., Teixeira, F. A., and Oliveira, R. A. (2018). Temporal evolutionof vehicular network simulators: Challenges and perspectives. InProceedings of the20th International Conference on Enterprise Information Systems.

Sommer, C. and Dressler, F. (2008). Progressing toward realistic mobility models in vanetsimulations.IEEE Communications Magazine, 46(11):132–137.

Tornell, S. M., Calafate, C. T., Cano, J. C., and Manzoni, P. (2015). Dtn protocols forvehicular networks: An application oriented overview.IEEE Communications SurveysTutorials, 17:868–887.

Uppoor, S., Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. M. (2014). Generationand analysis of a large-scale urban vehicular mobility dataset.IEEE Transactions onMobile Computing, 13(5):1061–1075.

Varga, A. (2010).OMNeT++, pages 35–59. Springer Berlin Heidelberg.

Wang, J., Jiang, C., Zhang, K., Quek, T. Q. S., Ren, Y., and Hanzo, L. (2018). Vehicularsensing networks in a smart city: Principles, technologies and applications.IEEEWireless Communications, 25(1):122–132.
Published
2020-06-30
SILVA, Maurício; OLIVEIRA, Ricardo; AQUINO, André. Evaluation of the reliability of synthetic mobility models applied in vehicular networks. In: PROCEEDINGS OF BRAZILIAN SYMPOSIUM ON UBIQUITOUS AND PERVASIVE COMPUTING (SBCUP), 12. , 2020, Cuiabá. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 61-70. ISSN 2595-6183. DOI: https://doi.org/10.5753/sbcup.2020.11212.