BBAware - A Context-Aware Mobile and Wearable Architecture for Monitoring Beta-Blocked Cardiac Patients
Resumo
Beta-blockade drugs are still in use as treatment option to lower heart rate, to improve cardiac function, and to reduce cardiovascular events. Patients who use beta-blockers usually surpass a therapeutic test full of collateral effects to adapt their organisms. Furthermore, these patients with a baseline heart rate above 70 beats per minute have a significantly higher risk of all cardiovascular events. Context-aware healthcare field arises as an alternative to monitor patients constantly. This paper introduces the Beta-Blocked Aware (BBAware) project, a pervasive solution, that uses the concepts of ubiquitous healthcare in order to help patients under beta-blockade treatments.
Referências
Chigira, H., Ihara, M., Kobayashi, M., Tanaka, A., and Tanaka, T. (2014). Heart rate monitoring through the surface of a drinkware. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 685–689.
Crawford, M. H., Bernstein, S. J., Deedwania, P. C., Dimarco, J. P., Ferrick, K. J., Garson, A., Green, L. A., Greene, H. L., Silka, M. J., Stone, P. H., Tracy, C. M., Gibbons, R. J., Alpert, J. S., Eagle, K. A., Gardner, T. J., Gregoratos, G., Russell, R. O., Ryan, T. J., Smith, S. C., and Introduction, I. (1999). Acc/aha guidelines for ambulatory electrocardiography: executive summary and recommendations: a report of the american college of cardiology/american heart association task force on practice guidelines (committee to revise the guidelines for ambulatory electrocardiography). Circulation, (100):886–893.
de Melo, D. S. B. (2011). Impacto do uso rápido dos betabloqueadores sobre a mortalidade e remodelamento ventricular na insuficiência cardíaca avançada. Doctorate, Faculdade de Medicina da Universidade de São Paulo.
Diaz, A., Bourassa, M. G., Guertin, M.-C., and Tardif, J.-C. (2005). Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. European heart journal, 26(10):967–74.
Fox, K., Ford, I., Steg, P. G., Tendera, M., and Ferrari, R. (2008). Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. The Lancet, 372(9641):807–816.
Freemantle, N., Cleland, J., Young, P., Mason, J., and Harrison, J. (1999). Beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ (Clinical research ed.), 318(7200):1730–7.
Gelogo, Y. E. and Kim, H.-K. (2013). Unified Ubiquitous Healthcare System Architecture with Collaborative Model. International Journal of Multimedia and Ubiquitous Engineering, 8(3):239–244.
Jovanov, E. (2015). Preliminary analysis of the use of smartwatches for longitudinal health monitoring. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages 865–868.
Kjekshus, J. K. (1986). Importance of heart rate in determining beta-blocker efficacy in acute and long-term acute myocardial infarction intervention trials. The American Journal of Cardiology, 57(12).
Lemay, M., Bertschi, M., Sola, J., Renevey, P., Parak, J., and Korhonen, I. (2014). Application of optical heart rate monitoring. In Wearable Sensors: Fundamentals, Implementation and Applications, pages 105–129. Academic Press, Oxford.
Mathers, C. D. and Loncar, D. (2006). The Importance of Heart Rate in Coronary Artery Disease. PLoS Medicine, 3(11):2011–2030.
Murnane, E. L., Huffaker, D., and Kossinets, G. (2015). Mobile Health Apps : Adoption , Adherence , and Abandonment. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, pages 261–264.
Phan, D., Siong, L. Y., Pathirana, P. N., and Seneviratne, A. (2015). Smartwatch: Performance evaluation for long-term heart rate monitoring. In International Symposium on Bioelectronics and Bioinformatics (ISBB), pages 144–147.
Rocha, C. C. L., da Costa, C. A., and Righi, R. d. R. (2015). Um modelo para monitoramento de sinais vitais do coração baseado em ciência da situação e computação ubíqua. In VII Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP), Pernambuco.
Rubin, J., Eldardiry, H., Abreu, R., Ahern, S., Du, H., Pattekar, A., and Bobrow, D. G. (2015). Towards a Mobile and Wearable System for Predicting Panic Attacks. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 529–533.
Sannino, G. and De Pietro, G. (2011). An evolved ehealth monitoring system for a nuclear medicine department. In Proceedings - 4th International Conference on Developments in eSystems Engineering, DeSE 2011, pages 3–6.
Vieira, V., Tedesco, P., and Salgado, A. C. (2011). Designing context-sensitive systems: An integrated approach. Expert Systems with Applications, 38(2):1119–1138.
WHO, W. H. O. (2014). The top 10 causes of death. URL: http://www.who.int/mediacentre/factsheets/fs310/en/.