Multi-objective Tuning of Generalized Predictive Controller: A Trade-off Between Performance and Robustness

  • Javan Ataide de Oliveira Júnior UTFPR
  • Wesley Assunção UTFPR
  • Daniel C. Jeronymo UTFPR

Resumo


This paper investigates the application of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to the Generalized Predictive Controller (GPC) parameter tuning. GPC stands out for using predictions of a future system behavior in order to evaluate an optimal control law according to certain performance criteria. GPC deals with multiple conflicting objectives such as minimizing set-point error, reducing variation of control actions and greater robustness. In this work, NSGA-II is applied to the problem of parameter tuning considering the trade-off between performance and robustness. A rule is deduced for choosing an adequate solution in the Pareto front which leads to overall best compromise between performance and robustness criteria. From the results we can observe that NSGA-II reaches satisfactory solutions that allows a better decision-making.

Palavras-chave: Process Control, Model Based Predictive Control, Generalized Predictive Control, NSGA-II

Referências

A. L. Maitelli and A. L. Cavalcanti, “Sintonia de controladores preditivos baseada em algoritmos genéticos multi-objetivos.” in XII Latin-American Congress on Automatic Control, 2006, pp. 116–120, in Portuguese.

L. M. Tizzo and L. C. Lopes, “Otimização com multiobjetivo aplicada à sintonia de controlador preditivo.” in VIII Congresso Brasileiro de Engenharia Química em Iniciação Científica, 2009, pp. 27–30, in Portuguese.

J. Normey-Rico and E. Camacho, Control of Dead-Time Processes. Springer, 01 2007.

D.W. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—part i. the basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987.

J. B. Ribeiro, “Controlador Preditivo Generelizado (GPC),” 2003, in Portuguese.

K. J. Aström, “Model uncertainty and robust control,” in in Lecture Notes on Iterative Identification and Control Design, 2000, pp. 63–100.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182 –197, 2002.

T. E. MARLIN, Process Control. McGraw-Hill, 1995.

K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, 1st ed. Princeton, 2008.

K.J. Aström and B.Wittenmark, Computer-controlled systems: theory and design. Courier Corporation, 2013.

F. Biscani, D. Izzo, and M. Märtens,“Esa/pagmo2:Pagmo2.7,” 2018. [Online]. Available: https://zenodo.org/record/1217831

J. O. Trierweiler, L. A. Farina, and R. G. Duraiski, “Rpn tuning strategy for model predictive control,” in Symposium on Dynamics and Control of Process and Bioprocess Systems, 2001.

A.S. Yamashita, A.C. Zanin, and D.Odloak, “Tuning of model predictive control with multi-objective optimization,” Brazilian Journal of Chemical Engineering, vol. 33, pp. 333–346, 06 2016.

D. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—part ii extensions and interpretations,” vol. 23, pp. 149–160, 03 1987.

A. McIntosh, S. Shah, and D. Fisher, “Selection of tuning parameters for adaptive generalized predictive control,” in American Control Conference. IEEE, 1989, pp. 1846–1851.

A. R. Mcintosh, S. L. Shah, and D. G. Fisher, “Analysis and tuning of adaptive generalized predictive control,” The Canadian Journal of Chemical Eng., vol. 69, no. 1, pp. 97–110, 1991.

A. Abate, I. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, and D. Kroening, “Sound and automated synthesis of digital stabilizing controllers for continuous plants,” in Conf. on Hybrid Systems: Computation and Control, 2017, pp. 197–206
Publicado
06/11/2018
DE OLIVEIRA JÚNIOR, Javan Ataide; ASSUNÇÃO, Wesley; JERONYMO, Daniel C. . Multi-objective Tuning of Generalized Predictive Controller: A Trade-off Between Performance and Robustness. In: SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS (SBESC), 8. , 2018, Salvador. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 80-85. ISSN 2237-5430.