Cost Estimation for Agile Software Development in Small and Medium-Sized Enterprises

  • Marcos V. Santos UFS
  • Michel S. Soares UFS

Abstract


Problem Statement: The adoption of agile methodologies combined with financial management and cost estimation presents a significant challenge for small and medium-sized enterprises (SMEs). Methods: A systematic literature review was conducted to identify key challenges in cost estimation, strategies to address them, and tools used. Based on this, the application of estimation models in agile environments is analysed. Results: A specific cost estimation model for SMEs is developed, along with practical guidelines for its implementation. This study contributes to improving financial management in agile environments by promoting practices aligned with the needs of SMEs.

References

Alanazi, S. T., Abdullah, N., Anbar, M., and Al-Wesabi, O. A. (2019). Evaluation approaches of service oriented architecture (soa)-a survey. In 2019 2nd International Conference on Computer Applications & Information Security (IC-CAIS), pages 1–6. IEEE.

Arora, M., Verma, S., Kavita, Wozniak, M., Shafi, J., and Ijaz, M. F. (2022). An efficient anfis-eebat approach to estimate efort of scrum projects. Scientific Reports, 12(1):02–14.

Boehm, B. W., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R. (1995). Cost models for future software life cycle processes: Cocomo 2.0. Annals of Software Engineering, 1:57–94.

Butt, S. A., Ercan, T., Binsawad, M., Ariza-Colpas, P.-P., Diaz-Martinez, J., Pineres-Espitia, G., De-La-Hoz-Franco, E., Melo, M. A. P., Ortega, R. M., and De-La-Hoz-Hernández, J.-D. (2023). Prediction based cost estimation technique in agile development. Advances in engineering software, 175:01–12.

Choudhari, J. and Suman, U. (2012). Story points based effort estimation model for software maintenance. Procedia Technology, 4:761–765.

Fernández-Diego, M., Méndez, E. R., González-Ladrón-De-Guevara, F., Abrahão, S., and Insfran, E. (2020). An update on effort estimation in agile software development: A systematic literature review. IEEE Access, 8:68–100.

Gandomani, T. J., Faraji, H., and Radnejad, M. (2019). Planning poker in cost estimation in agile methods: Averaging vs. consensus. In 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pages 066–071. IEEE.

Khan, J. A., Khan, S. U. R., Khan, T. A., and Khan, I. U. R. (2021). An amplified cocomo-ii based cost estimation model in global software development context. IEEE Access, 9:88602–88620.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., and Linkman, S. (2010). Systematic literature reviews in software engineering: A tertiary study. Information and Software Technology, 52(8):792–805.

Komala, C., Sowmya, H., Aruna, R., Kumar, A., Maranan, R., Medikondu, N. R., Rajaram, A., et al. (2023). Innovative cost estimation for agile technology: A novel energy storage technique incorporating modified planning poker. International Journal of Renewable Energy Research (IJRER), 13(4):1646–1660.

Lee, I. (2021). Pricing and profit management models for saas providers and iaas providers. Journal of Theoretical and Applied Electronic Commerce Research, 16(4):859–873.

Najm, A., Zakrani, A., and Marzak, A. (2023). Efficient shapely explanation of support vector regression for agile and non-agile software effort estimation. In Intelligent Sustainable Systems: Selected Papers of WorldS4 2022, Volume 2, pages 711–729. Springer.

Parsifal (2018). Systematic literature review tool. Accessed: 01.5.2024. [Pasuksmit et al. 2024] Pasuksmit, J., Thongtanunam, P., and Karunasekera, S. (2024). A systematic literature review on reasons and approaches for accurate effort estimations in agile. ACM Computing Surveys.

PRODAM-SP (2024). Edital de pregão eletrônico no 09.004/2024 (compras.gov 99004/2024). [link]. Acesso em: 03 set. 2025.

Putri, R. R., Siahaan, D. O., and Fatichah, C. (2021). Improve the accuracy of software project effort and cost estimates in cocomo ii using gwo. In 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), pages 128–133. IEEE.

Ramessur, M. A. and Nagowah, S. D. (2021). A predictive model to estimate effort in a sprint using machine learning techniques. International Journal of Information Technology, 13(3):02–10.

Rindell, K., Ruohonen, J., Holvitie, J., Hyrynsalmi, S., and Leppänen, V. (2021). Security in agile software sevelopment: A practitioner survey. Information and Software Technology, 131:106488.

Robles, B. D. V., Lara, I. L. A., Salgado, R. S., and Hidalgo-Reyes, M. (2023). Identification of methods, approaches, and factors in effort estimation for devops projects: A systematic literature mapping. In 2023 Mexican International Conference on Computer Science (ENC), pages 1–6. IEEE.

Rodríguez Sánchez, E., Vázquez Santacruz, E. F., and Cervantes Maceda, H. (2023). Effort and cost estimation using decision tree techniques and story points in agile software development. Mathematics, 11(6):1477.

Tawosi, V., Al-Subaihin, A., Moussa, R., and Sarro, F. (2022). A versatile dataset of agile open source software projects. In Proceedings of the 19th International Conference on Mining Software Repositories, pages 707–711.

Usman, M., Mendes, E., Weidt, F., and Britto, R. (2014). Effort estimation in agile software development: a systematic literature review. In Proceedings of the 10th international conference on predictive models in software engineering, PROMISE ’14, pages 82–91, New York, NY, USA. Association for Computing Machinery.

Van Solingen, R. and Berghout, E. W. (1999). The Goal/Question/Metric Method: a practical guide for quality improvement of software development. McGraw-Hill.
Published
2025-11-04
SANTOS, Marcos V.; SOARES, Michel S.. Cost Estimation for Agile Software Development in Small and Medium-Sized Enterprises. In: WORKSHOP ON THESES AND DISSERTATIONS IN SOFTWARE QUALITY - BRAZILIAN SOFTWARE QUALITY SYMPOSIUM (SBQS), 24. , 2025, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 1-6. DOI: https://doi.org/10.5753/sbqs_estendido.2025.13396.