Framework for Strategic Decision-Making Based on Business Requirements in Software Projects with Artificial Intelligence for Public Organizations

  • Henrique P. P. Costa ITA
  • Johnny Cardoso Marques ITA

Abstract


This paper presents ongoing Master’s research that aims to develop a method to enhance strategic decision-making for artificial intelligence (AI) projects in the public sector. The proposal is grounded in the application of requirements engineering as a structuring approach to identify the essential elements that guide the formulation and evaluation of these projects. The method will result in a framework named StrategIA, designed to ensure that AI-based solutions are aligned with institutional objectives and effectively generate public value.

References

Alves, A. P. S., Kalinowski, M., Mendez, D., Villamizar, H., Azevedo, K., Escovedo, T., and Lopes, H. (2024). Industrial practices of requirements engineering for ml-enabled systems in brazil.

Campbell, C. (2010). The One-Page Project Manager for IT Projects: Communicate and Manage Any Project With A Single Sheet of Paper. Wiley.

Dolata, M. and Crowston, K. (2024). Making sense of ai systems development. IEEE Transactions on Software Engineering, 50(1):123–140.

Einhorn, F., Marnewick, C., and Meredith, J. (2019). Achieving strategic benefits from business it projects: The critical importance of using the business case across the entire project lifetime. International Journal of Project Management, 37(8):989–1002.

Gartner (2025). Gartner predicts over 40Accessed: 2025-08-02.

Gjorgjevikj, A., Mishev, K., Antovski, L., and Trajanov, D. (2023). Requirements engineering in machine learning projects. IEEE Access, 11:72186–72208.

Miles, M. B., Huberman, A. M., and Saldaña, J. (2014). Qualitative Data Analysis: A Methods Sourcebook. SAGE Publications, 3rd edition.

Moore, M. H. (2021). Creating public value: The core idea of strategic management in government. International Journal of Professional Business Review, 6(1):e219.

Njanka, S. Q., Sandula, G., and Colomo-Palacios, R. (2021). It-business alignment: A systematic literature review. Procedia Computer Science, 181:333–340. CENTERIS 2020 - International Conference on ENTERprise Information Systems / ProjMAN 2020 - International Conference on Project MANagement / HCist 2020 - International Conference on Health and Social Care Information Systems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020.

Project Management Institute (2021). A Guide to the Project Management Body of Knowledge (PMBOK Guide). Project Management Institute, Newtown Square, PA, 7 edition.

Vasconcelos, E. S. and Santos, F. A. d. (2024). Inteligência artificial na gestão pública brasileira: desafios e oportunidades para a eficiência governamental. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(6):e5017.

Vasconcelos, K. and Marques, J. (2023). Um mapeamento sistemático da literatura sobre o processo decisório de investimentos de tecnologias da informação em organizações públicas. In Anais do XI Workshop de Computação Aplicada em Governo Eletrônico, pages 25–36, Porto Alegre, RS, Brasil. SBC.

Vayyavur, R. (2024). Why ai projects fail: The importance of strategic alignment and systematic prioritization. International Journal of Research, 11:386–391.

Villamizar, H. and Kalinowski, M. (2024). Identifying concerns when specifying machine learning-enabled systems: A perspective-based approach. In Anais do XXIII Simpósio Brasileiro de Qualidade de Software, page 673–675, Porto Alegre, RS, Brasil. SBC.

Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, volume 1, pages 29–39. Manchester.
Published
2025-11-04
COSTA, Henrique P. P.; MARQUES, Johnny Cardoso. Framework for Strategic Decision-Making Based on Business Requirements in Software Projects with Artificial Intelligence for Public Organizations. In: WORKSHOP ON THESES AND DISSERTATIONS IN SOFTWARE QUALITY - BRAZILIAN SOFTWARE QUALITY SYMPOSIUM (SBQS), 24. , 2025, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 31-36. DOI: https://doi.org/10.5753/sbqs_estendido.2025.15838.