Predição de Ataques DDoS pela Correlação de Séries Temporais via Padrões Ordinais

  • Lucas Albano UFMG
  • Ligia F. Borges UFMG
  • Anderson B. de Neira UFPR
  • Michele Nogueira UFMG / UFPR

Resumo


Os dispositivos infectados na Internet das Coisas (IoT) representam um dos principais desafios no combate aos ataques de negação de serviço distribuído (DDoS). Os atacantes camuflam suas ações e atrasam a predição do ataque, impulsionando a criação de novas soluções resilientes a ruídos e variações anormais no tráfego de rede. Este artigo apresenta uma técnica para predição de ataques DDoS fundamentada em uma metodologia inovadora para extração de características de rede. A proposta beneficia-se da tolerância ao ruído da transformação ordinal para a predição dos ataques DDoS. A predição aplica o algoritmo One-Class SVM que independe de dados rotulados. A técnica prediz um ataque até 44 minutos antes do seu início com acurácia de 89%.

Referências

Abaid, Z., Sarkar, D., Kaafar, M. A., and Jha, S. (2016). The early bird gets the botnet:a markov chain based early warning system for botnet attack. In IEEE LCN, pages 1–8.

Amer, M., Goldstein, M., and Abdennadher, S. (2013). Enhancing one-class support vector machines for unsupervised anomaly detection. ACM SIGKDD, pages 8–15.

Bandt, C. and Pompe, B. (2002). Permutation entropy: a natural complexity measure for time series. Physical review letters, 88(17):174102.

Bezerra, V. H., da Costa, V. G. T., Barbon Junior, S., Miani, R. S., and Zarpelão, B. B. (2019). Iotds: A one-class classification approach to detect botnets in internet of things devices. Sensors, 19(14):3188.

Borges, J. B., Medeiros, J. P., Barbosa, L. P., Ramos, H. S., and Loureiro, A. A. (2022). Iot botnet detection based on anomalies of multiscale time series dynamics. IEEE TKDE.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Brito, D., Neira, A., Borges, L., Araújo, A., and Nogueira, M. (2023). Um sistema autônomo para a predição de ataques de ddos em redes locais e internet. In WGRS, pages 29–42, Porto Alegre, RS, Brasil. SBC.

Brockwell, P. J. and Davis, R. A. (2009). Time series: theory and methods. Springer science & business media.

Bury, T. M., Bauch, C. T., and Anand, M. (2020). Detecting and distinguishing tipping points using spectral early warning signals. J. R. Soc., 17(170).

Chagas, E. T., Borges, J. B., and Ramos, H. S. (2022). Uso de padrões ordinais na caracterização e análise de ataques de botnets em internet das coisas (IoT). In WebMedia, pages 133–137. SBC.

de Neira, A. B., de Araujo, A. M., and Nogueira, M. (2023). An intelligent system for DDoS attack prediction based on early warning signals. IEEE TNSM, 20(2):1–13.

Feng, Y., Akiyama, H., Lu, L., and Sakurai, K. (2018). Feature selection for machine learning-based early detection of distributed cyber attacks. In DASC, pages 173–180, Greece. IEEE.

Ferreira, A. E. and Nogueira, M. (2018). Identificando botnets geradoras de ataques ddos volumétricos por processamento de sinais em grafos. In WGRS. SBC.

Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014). An empirical comparison of botnet detection methods. C&S, 45:100–123.

Garcia, S., Parmisano, A., and Erquiaga, M. J. (2020). IoT-23: A labeled dataset with malicious and benign IoT network traffic.

Griffioen, H., Oosthoek, K., van der Knaap, P., and Doerr, C. (2021). Scan, test, execute: Adversarial tactics in amplification ddos attacks. In ACM SIGSAC, pages 940–954.

Jyoti, N. and Behal, S. (2021). A meta-evaluation of machine learning techniques for detection of DDoS attacks. In INDIACom, pages 522–526, India. IEEE.

Lamberti, P. W., Martin, M., Plastino, A., and Rosso, O. (2004). Intensive entropic nontriviality measure. PHYSA, 334(1-2):119–131.

Netscout (2023). Findings from 2nd half 2022. [(Acessado em: Abril de 2023)]. https://www.netscout.com/threatreport/global-highlights.

Rafiee, M. et al. (2022). Self-organization map (SOM) algorithm for ddos attack detection in distributed software defined network (D-SDN). JIST, 2(38):120.

Rahal, B. M., Santos, A., and Nogueira, M. (2020). A distributed architecture for DDoS prediction and bot detection. IEEE Access, 8:159756–159772.

Ribeiro, H. V., Jauregui, M., Zunino, L., and Lenzi, E. K. (2017). Characterizing time series via complexity-entropy curves. Physical Review E, 95(6):062106.

Rosso, O. A., Larrondo, H., Martin, M. T., Plastino, A., and Fuentes, M. A. (2007). Distinguishing noise from chaos. Physical review letters, 99(15):154102.

Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. In ICCST.

Silva, G. L. F. E., de Neira, A. B., and Nogueira, M. (2022). A deep learning-based system for ddos attack anticipation. In LATINCOM, pages 1–6. IEEE.
Publicado
18/09/2023
ALBANO, Lucas; BORGES, Ligia F.; NEIRA, Anderson B. de; NOGUEIRA, Michele. Predição de Ataques DDoS pela Correlação de Séries Temporais via Padrões Ordinais. In: SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 23. , 2023, Juiz de Fora/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 69-82. DOI: https://doi.org/10.5753/sbseg.2023.233476.

Artigos mais lidos do(s) mesmo(s) autor(es)