Detecção de Fraudes em Criptomoedas utilizando Métodos de Classificação de Séries Temporais baseados em Redes Neurais
Resumo
Este artigo apresenta um método baseado em modelos preditivos de redes neurais para detecção de fraudes em criptomoedas provenientes de Initial Coin Offering (ICO). Através da análise de Séries Temporais geradas a partir de tabelas de fluxo de transações na rede Ethereum, foram desenvolvidas 5 séries temporais normalizadas que serviram como entrada para os modelos de Redes Neurais Artificiais (RNA) MLP, CNN-MLP e LSTM-MLP projetados para classificação. Dado que 78% das atividades de ICO são fraudulentas, este método é um importante passo em direção à prevenção de fraudes em criptomoedas. Os resultados obtidos na pesquisa foram bastante satisfatórios, com um valor de Recall de até 91% em alguns casos.
Referências
Bartoletti, M., Carta, S., Cimoli, T., and Saia, R. (2020). Dissecting ponzi schemes on ethereum: identification, analysis, and impact. Future Generation Computer Systems, 102:259–277.
Belitski, M. and Boreiko, D. (2021). Success factors of initial coin offerings. J Technol Transf.
Bellavitis, C., Fisch, C., and Wiklund, J. (2021). A comprehensive review of the global development of initial coin offerings (icos) and their regulation. Journal of Business Venturing Insights, 15:e00213.
Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
Campino, J., Brochado, A., and Rosa, A. (2022). Initial coin offerings (icos): Why do they succeed? Financ Innov, 8:17.
Casino, F., Dasaklis, T. K., and Patsakis, C. (2018). A systematic literature review of blockchain-based applications: current status, classification and open issues. Telematics and Informatics, 35(8):2337–2357.
Chen, W., Li, X., Sun, Y., Huang, N., Wang, H., Wu, L., and Liu, X. (2021). Sadponzi: Detecting and characterizing ponzi schemes in ethereum smart contracts. Proc. ACM Meas. Anal. Comput. Syst., 5(2):26.
Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., and Zhou, Y. (2018). Detecting ponzi schemes on ethereum: Towards healthier blockchain technology. In Proceedings of the 2018 World Wide Web Conference, pages 1409–1418. ACM.
Chen, W., Zheng, Z., Ngai, E., Zheng, P., and Zhou, Y. (2019). Exploiting blockchain data to detect smart ponzi schemes on ethereum. IEEE Access, 7:37575–37586.
Chod, J. and Lyandres, E. (2019). A theory of icos: Diversification, agency, and information asymmetry. Agency, and Information Asymmetry.
Fan, S., Fu, S., Xu, H., and Cheng, X. (2021). Al-spsd: Anti-leakage smart ponzi schemes detection in blockchain. Information Processing & Management, 58(4):102587.
Hartmann, F., Wang, S., and Lunesu, M. (2018). Evaluation of initial cryptoasset offerings: The state of the practice. In 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pages 33–39. IEEE.
Jung, E., Le Tilly, M., Gehani, A., and Ge, Y. (2019). Data mining-based ethereum fraud detection. In 2019 IEEE International Conference on Blockchain (Blockchain), pages 266–273. IEEE.
Kamps, J. and Kleinberg, B. (2018). To the moon: defining and detecting cryptocurrency pump-and-dumps. Crime Science, 7(1):18.
Kher, R., Terjesen, S., and Liu, C. (2020). Blockchain, bitcoin, and icos: a review and research agenda. Small Business Economics, pages 1–22.
Kiffer, L., Levin, D., and Mislove, A. (2018). Analyzing ethereum’s contract topology. In Proceedings of the Internet Measurement Conference 2018, pages 494–499. ACM.
Milne, A. (2018). Cryptocurrencies from an austrian perspective. In Banking and Monetary Policy from the Perspective of Austrian Economics, pages 223–257. Springer.
Oliva, G. A., Hassan, A. E., and Jiang, Z. M. (2020). An exploratory study of smart contracts in the ethereum blockchain platform. Empirical Software Engineering, pages 1–41.
Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64:1–18.
Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday.
Thies, F., Wallbach, S., Wessel, M., and Benlian, A. (2021). Initial coin offerings and the cryptocurrency hype the moderating role of exogenous and endogenous signals. Electron Markets.
Ulrich, F. (2017). Bitcoin: a moeda na era digital. LVM Editora, S.l.
Wang, L., Cheng, H., Zibin, Z., Aijun, Y., and Xiaohu, Z. (2021). Ponzi scheme detection via oversampling-based long short-term memory for smart contracts. Knowledge-Based Systems, 228:107312.
Xu, J. and Livshits, B. (2019). The anatomy of a cryptocurrency pump-and-dump scheme. In 28th USENIX Security Symposium (USENIX Security 19), pages 1609–1625.