TV Boxes as Support Servers for IoT Applications

  • Tiago Godoi Bannwart UNICAMP
  • Gustavo P. C. P da Luz UNICAMP
  • Gabriel Massuyoshi Sato UNICAMP
  • Luis Fernando Gomez Gonzalez UNICAMP
  • Juliana Freitag Borin UNICAMP

Resumo


This paper presents a fog computing server designed for Internet of Things (IoT) applications, which promotes the reuse of seized TV Box devices. A smart parking system deployed at the Institute of Computing, Unicamp served as the first IoT application to use the server with a TV Box model with limited hardware resources. The device was configured to provide monitoring services, enable remote firmware updates, and generate temporal metrics. Experimental results show that the system achieved operational stability, low energy consumption, and satisfactory performance within the proposed scenario. These findings confirm the technical feasibility of repurposing TV Boxes and highlight their potential as a low-cost and environmentally sustainable alternative for fog computing applications, in line with the principles of the circular economy.
Palavras-chave: Internet of Things, Device Repurposing, Fog Computing, Smart Cities, TV Box

Referências

G. P. da Luz, G. M. Sato, L. F. G. Gonzalez, and J. F. Borin, “Repurposing of tv boxes for a circular economy in smart cities applications,” Scientific Reports, vol. 15, no. 1, p. 22638, 2025, DOI: 10.1038/s41598-025-97379-4.

R. Jansen. (2024) Cigarro, bebida e aparelho de ‘gatonet’: como universidades usam apreensões da receita na pesquisa. Acessed in: 7 out. 2025. [Online]. Available: [link]

Secretaria-Geral da Presidência da República. (2021) Receita federal e associação brasileira de televisão por assinatura destroem mais de 97 mil aparelhos de tv box piratas no rio de janeiro. [Online]. Available: [link]

R. A. Campos, F. A. N. Martini, J. T. F. Suzuki et al., “Projeto recriar: sustentabilidade, inclusão digital e inovação pedagógica a partir da reutilização de dispositivos tecnológicos ilegais,” Editora Impacto Científico, pp. 2100–2121, 2025, DOI: 10.56238/arev7n7-076.

M. P. Sobrinho, J. Sousa, F. Carvalho, C. Silva, and L. Santos, “Explorando tv boxes em ambientes educacionais: Vantagens e limitações operando como thin client,” in Anais da XII Escola Regional de Computação do Ceará, Maranhão e Piauí, 2024, pp. 249–258, DOI: 10.5753/ercemapi.2024.243796.

G. Sato, G. Luz, L. Gonzalez, and J. Borin, “Reaproveitamento de tv boxes para aplicação de contagem de pessoas na borda em cidades inteligentes,” in Anais do VIII Workshop de Computação Urbana. Porto Alegre, RS, Brasil: SBC, 2024, pp. 197–209, DOI: 10.5753/courb.2024.3375.

G. M. Sato, G. P. da Luz, L. F. G. Gonzalez, and J. F. Borin, “People counting application with crowded scenarios: A case study with tv boxes as edge devices,” Journal of Internet Services and Applications, vol. 16, no. 1, pp. 470–479, 2025, DOI: 10.5753/jisa.2025.5156.

F. Shu and J. Shu, “An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box,” Scientific Reports, vol. 11, no. 1, p. 2471, 2021, DOI: 10.1038/s41598-021-81115-9.

R. Moreira, L. F. R. Moreira, P. L. A. Munhoz, E. A. Lopes, and R. A. A. Ruas, “Agrolens: A low-cost and green-friendly smart farm architecture to support real-time leaf disease diagnostics,” Internet of Things, vol. 19, p. 100570, 2022, DOI: 10.1016/j.iot.2022.100570.

G. P. da Luz, G. M. Sato, T. G. Bannwart, L. F. G. Gonzalez, and J. F. Borin, “10 years of deep learning for vehicle detection at a smart parking: What has changed?” in Workshop de Computação Urbana (CoUrb). SBC, 2025, pp. 127–140, DOI: 10.5753/courb.2025.8869.
Publicado
26/11/2025
BANNWART, Tiago Godoi; LUZ, Gustavo P. C. P da; SATO, Gabriel Massuyoshi; GONZALEZ, Luis Fernando Gomez; BORIN, Juliana Freitag. TV Boxes as Support Servers for IoT Applications. In: WORKSHOP ON SUSTAINABLE COMPUTING AND TECHNOLOGY REUSE (SCORE), 1. , 2025, Campinas/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 1-4. DOI: https://doi.org/10.5753/score.2025.17175.