An Underwater Sound Propagation Model based on Ray Tracing for Virtual Reality
Resumo
The emergence of new technologies for Virtual Reality has provided the user with a greater feeling of immersion. This immersion includes visual and sound perception, making realistic models for the light and sound behavior necessary. The Computer Graphics field is already well consolidated, but studies still need to be conducted on sound behavior in Virtual Reality. In this context, this work describes a new simplified underwater sound propagation model using the Unity game engine. The proposed approach allows the development of virtual environments with realistic underwater sound effects. Based on the ray-tracing algorithm, the implementation presents satisfactory results considering static sound sources. This paper describes the proposed model and a few test scenarios, and discusses the results obtained.
Palavras-chave:
virtual reality, game engine, sound propagation, underwater, ray tracing
Referências
Michael A. Ainslie and James G. McColm. 1998. A simplified formula for viscous and chemical absorption in sea water. The Journal Of The Acoustical Society Of America 103, 3 (1998), 1671–1672.
Arthur Silva Bastos, Renata Faria Gomes, Clemilson Costa dos Santos, and José Gilvan Rodrigues Maia. 2017. Assessing the Experience of Immersion in Electronic Games. In 2017 19th Symposium on Virtual and Augmented Reality (SVR). IEEE, Curitiba, PR, Brazil, 146–154. DOI: 10.1109/SVR.2017.27
Rômulo Cerqueira, Tiago Trocoli, Jan Albiez, and Luciano Oliveira. 2020. A rasterized ray-tracer pipeline for real-time, multi-device sonar simulation. Graphical Models 111 (2020), 101086. DOI: 10.1016/j.gmod.2020.101086
Rômulo Cerqueira, Tiago Trocoli, Gustavo Neves, Sylvain Joyeux, Jan Albiez, and Luciano Oliveira. 2017. A novel GPU-based sonar simulator for real-time applications. Computers & Graphics 68 (2017), 66–76. DOI: 10.1016/j.cag.2017.08.008
Stanley A. Chin-Bing, David B. King, James A. Davis, and Richard B. Evans. 1993. PE Workshop II. Naval Research Laboratory (NRL), Stennis Space Center, MS 39529-5004.
Gustavo Corrêa De Almeida, Vinicius Costa de Souza, Luiz Gonzaga Da Silveira Júnior, and Maurício Roberto Veronez. 2024. Spatial Audio in Virtual Reality: A systematic review. In Proceedings of the 25th Symposium on Virtual and Augmented Reality (, Rio Grande, Brazil,) (SVR ’23). Association for Computing Machinery, New York, NY, USA, 264–268. DOI: 10.1145/3625008.3625042
Rui Ding and Shiguang Liu. 2021. Underwater sound propagation for virtual environments. The Visual Computer 37, 9 (2021), 2797–2807. DOI: 10.1007/s00371-021-02175-6
Thomas Funkhouser, Nicolas Tsingos, and Jean-Marc Jot. 2003. Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems. Presence: Teleoperators and Virtual Environments 12 (2003), 1–53. [link]
Marcin Gorzel, Andrew Allen, Ian Kelly, Julius Kammerl, Alper Gungormusler, Hengchin Yeh, and Francis Boland. 2019. Efficient Encoding and Decoding of Binaural Sound with Resonance Audio. In Proceedings of the AES Conference on Immersive and Interactive Audio. Audio Engineering Society (AES), York, UK, 1–12.
Jens M. Hovem. 2013. Ray Trace Modeling of Underwater Sound Propagation. In Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, Marco G. Beghi (Ed.). IntechOpen, Rijeka, Chapter 23, 573–598. DOI: 10.5772/55935
Finn B. Jensen and Carlo M. Ferla. 1990. Numerical solutions of range-dependent benchmark problems in ocean acoustics. Journal of the Acoustical Society of America 87, 4 (1990), 1499–1510.
Finn B. Jensen, William A. Kuperman, Michael B. Porter, and Henrik Schmidt. 2011. Computational ocean acoustics (2nd ed.). Springer, New York.
Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson. 1993. Auralization. AES: Journal of the Audio Engineering Society 41 (1993), 861–875.
E. Lakka, A. Malamos, K. Pavlakis, and J. Ware. 2018. Spatial Sound Rendering. International Journal of Interactive Multimedia and Artificial Intelligence 5 (2018), 33–45.
Shiguang Liu and Dinesh Manocha. 2021. Sound Synthesis, Propagation, and Rendering: A Survey. arXiv:2011.05538 [cs.SD] [link]
Ravish Mehra, Lakulish Antani, Sujeong Kim, and Dinesh Manocha. 2014. Source and Listener Directivity for Interactive Wave-Based Sound Propagation. IEEE Transactions On Visualization And Computer Graphics 20, 4 (2014), 495–503.
Rasmus Sloth Pedersen and Martin Keane. 2016. Validation of dBSea, Underwater Noise Prediction Software. Pile Driving Focus. Journal of Shipping and Ocean Engineering 6 (2016), 1–11.
Sönke Pelzer, Dirk Schröder, and Michael Vorlaender. 2011. The number of necessary rays in geometrically based simulations using the diffuse rain technique. In Proceedings of the DAGA. Deutsche Gesellschaft für Akustik e.V. (DEGA), Düsseldorf, Germany, 323–324.
Finnur Kári Pind Jörgensson, Cheol-Ho Jeong, Hermes Sampedro Llopis, Kacper Kosikowski, and Jakob Strømann-Andersen. 2018. Acoustic Virtual Reality – Methods and challenges. In Proceedings of Baltic-Nordic Acoustic Meeting (BNAM). Nordic Acoustic Association, Harpa, Reykjavík, Iceland, 1–11.
Thomas Potter, Zoran Cvetković, and Enzo De Sena. 2022. On the relative importance of visual and spatial audio rendering on VR immersion. Frontiers in Signal Processing 2 (2022), 904866.
Lauri Savioja. 1999. Modeling Techniques for Virtual Acoustics. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland.
Lauri Savioja, Timo J. Rinne, and Tapio Takala. 1994. Simulation of room acoustics with a 3-D finite difference mesh. In Proceedings of the 1994 International Computer Music Conference. International Computer Music Association (ICMA), United States, 463–466.
Lauri Savioja and U. Peter Svensson. 2015. Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138 (2015), 708–730.
John C. Strikwerda. 2004. Finite difference schemes and partial differential equations (2nd ed.). Society for Industrial and Applied Mathematics SIAM, Philadelphia.
Arthur Silva Bastos, Renata Faria Gomes, Clemilson Costa dos Santos, and José Gilvan Rodrigues Maia. 2017. Assessing the Experience of Immersion in Electronic Games. In 2017 19th Symposium on Virtual and Augmented Reality (SVR). IEEE, Curitiba, PR, Brazil, 146–154. DOI: 10.1109/SVR.2017.27
Rômulo Cerqueira, Tiago Trocoli, Jan Albiez, and Luciano Oliveira. 2020. A rasterized ray-tracer pipeline for real-time, multi-device sonar simulation. Graphical Models 111 (2020), 101086. DOI: 10.1016/j.gmod.2020.101086
Rômulo Cerqueira, Tiago Trocoli, Gustavo Neves, Sylvain Joyeux, Jan Albiez, and Luciano Oliveira. 2017. A novel GPU-based sonar simulator for real-time applications. Computers & Graphics 68 (2017), 66–76. DOI: 10.1016/j.cag.2017.08.008
Stanley A. Chin-Bing, David B. King, James A. Davis, and Richard B. Evans. 1993. PE Workshop II. Naval Research Laboratory (NRL), Stennis Space Center, MS 39529-5004.
Gustavo Corrêa De Almeida, Vinicius Costa de Souza, Luiz Gonzaga Da Silveira Júnior, and Maurício Roberto Veronez. 2024. Spatial Audio in Virtual Reality: A systematic review. In Proceedings of the 25th Symposium on Virtual and Augmented Reality (, Rio Grande, Brazil,) (SVR ’23). Association for Computing Machinery, New York, NY, USA, 264–268. DOI: 10.1145/3625008.3625042
Rui Ding and Shiguang Liu. 2021. Underwater sound propagation for virtual environments. The Visual Computer 37, 9 (2021), 2797–2807. DOI: 10.1007/s00371-021-02175-6
Thomas Funkhouser, Nicolas Tsingos, and Jean-Marc Jot. 2003. Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems. Presence: Teleoperators and Virtual Environments 12 (2003), 1–53. [link]
Marcin Gorzel, Andrew Allen, Ian Kelly, Julius Kammerl, Alper Gungormusler, Hengchin Yeh, and Francis Boland. 2019. Efficient Encoding and Decoding of Binaural Sound with Resonance Audio. In Proceedings of the AES Conference on Immersive and Interactive Audio. Audio Engineering Society (AES), York, UK, 1–12.
Jens M. Hovem. 2013. Ray Trace Modeling of Underwater Sound Propagation. In Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, Marco G. Beghi (Ed.). IntechOpen, Rijeka, Chapter 23, 573–598. DOI: 10.5772/55935
Finn B. Jensen and Carlo M. Ferla. 1990. Numerical solutions of range-dependent benchmark problems in ocean acoustics. Journal of the Acoustical Society of America 87, 4 (1990), 1499–1510.
Finn B. Jensen, William A. Kuperman, Michael B. Porter, and Henrik Schmidt. 2011. Computational ocean acoustics (2nd ed.). Springer, New York.
Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson. 1993. Auralization. AES: Journal of the Audio Engineering Society 41 (1993), 861–875.
E. Lakka, A. Malamos, K. Pavlakis, and J. Ware. 2018. Spatial Sound Rendering. International Journal of Interactive Multimedia and Artificial Intelligence 5 (2018), 33–45.
Shiguang Liu and Dinesh Manocha. 2021. Sound Synthesis, Propagation, and Rendering: A Survey. arXiv:2011.05538 [cs.SD] [link]
Ravish Mehra, Lakulish Antani, Sujeong Kim, and Dinesh Manocha. 2014. Source and Listener Directivity for Interactive Wave-Based Sound Propagation. IEEE Transactions On Visualization And Computer Graphics 20, 4 (2014), 495–503.
Rasmus Sloth Pedersen and Martin Keane. 2016. Validation of dBSea, Underwater Noise Prediction Software. Pile Driving Focus. Journal of Shipping and Ocean Engineering 6 (2016), 1–11.
Sönke Pelzer, Dirk Schröder, and Michael Vorlaender. 2011. The number of necessary rays in geometrically based simulations using the diffuse rain technique. In Proceedings of the DAGA. Deutsche Gesellschaft für Akustik e.V. (DEGA), Düsseldorf, Germany, 323–324.
Finnur Kári Pind Jörgensson, Cheol-Ho Jeong, Hermes Sampedro Llopis, Kacper Kosikowski, and Jakob Strømann-Andersen. 2018. Acoustic Virtual Reality – Methods and challenges. In Proceedings of Baltic-Nordic Acoustic Meeting (BNAM). Nordic Acoustic Association, Harpa, Reykjavík, Iceland, 1–11.
Thomas Potter, Zoran Cvetković, and Enzo De Sena. 2022. On the relative importance of visual and spatial audio rendering on VR immersion. Frontiers in Signal Processing 2 (2022), 904866.
Lauri Savioja. 1999. Modeling Techniques for Virtual Acoustics. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland.
Lauri Savioja, Timo J. Rinne, and Tapio Takala. 1994. Simulation of room acoustics with a 3-D finite difference mesh. In Proceedings of the 1994 International Computer Music Conference. International Computer Music Association (ICMA), United States, 463–466.
Lauri Savioja and U. Peter Svensson. 2015. Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138 (2015), 708–730.
John C. Strikwerda. 2004. Finite difference schemes and partial differential equations (2nd ed.). Society for Industrial and Applied Mathematics SIAM, Philadelphia.
Publicado
30/09/2024
Como Citar
CASTRO, Guilherme Silva de; MALHEIROS, Marcelo de Gomensoro; BICHO, Alessandro de Lima.
An Underwater Sound Propagation Model based on Ray Tracing for Virtual Reality. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 31-40.