Inspection and Training using Virtual Reality Applied a new Wheel Loader Model

Resumo


This study introduces a new wheel loader model designed to enhance the inspection and training process for the handlers at a mining industry. This model incorporates advanced features, providing a comprehensive and realistic training experience. A key component is a virtual reality simulator, developed using a cross-platform game engine. This simulation serves as an interactive tool for performing maintenance inspection procedures, addressing a critical need for effective pre-operation safety instruction. The software was tested by 16 qualified professionals from the industry, across different conditions. The results demonstrated that the simulator significantly improves the initial training experience. Therefore, it allows employees to gain essential skills and knowledge without exposure to real-world risks. In addition, the new wheel loader model incorporates more real-life immersion as the interior of the cabin. It is constituted of the buttons and proper texturing, enabling operators to identify and address potential issues. Thus, further minimizing operation disruptions. Overall, the integration of this advanced wheel loader model with a sophisticated virtual reality apprenticeship not only enhances safety but also reduces machine downtime. Moreover, the integration allows reduced training costs and it provides a highly effective solution. Consequently, it ensures that operators are well-prepared for a wide range of situations that they may come across in the real world.
Palavras-chave: Virtual reality, Serious game, Training simulation, Inspection virtual environment, Immersive virtual reality

Referências

Borges, L. F. M. R., Viana, P. H. P., Oliveira, T. R. de, Martins, T. da S., Andreão, R. V., Schimidt, M. Q., & Mestria, M. (2024). Evaluating Virtual Reality Simulations for Wheel Loader Inspection. In Proceedings of the 25th Symposium on Virtual and Augmented Reality (SVR '23), Rio Grande, Brazil. Association for Computing Machinery, New York, NY, USA, 8–16. DOI: 10.1145/3625008.3625010

Cárdenas-Robledo, L. A., Hernández-Uribe, Ó., Reta, C., & Cantoral-Ceballos, J. A. (2022). Extended reality applications in industry 4.0 – A systematic literature review. Telematics and Informatics, 73, 101863. DOI: 10.1016/j.tele.2022.101863

Guo, Z., Zhou, D., Zhou, Q., Zhang, X., Geng, J., Zeng, S., Lv, C., & Hao, A. (2020). Applications of virtual reality in maintenance during the industrial product lifecycle: A systematic review. Journal of Manufacturing Systems, 56, 525–538. DOI: 10.1016/j.jmsy.2020.07.007

Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, pp. 904–908). Sage Publications Sage CA: Los Angeles, CA.

Kaplan, A. D., Cruit, J., Endsley, M., Beers, S. M., Sawyer, B. D., & Hancock, P. A. (2021). The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Human Factors, 63(4), 706–726. DOI: 10.1177/0018720820904229

Korkut, E. H., & Surer, E. (2023). Visualization in virtual reality: a systematic review. Virtual Reality, 27, 1447–1480. DOI: 10.1007/s10055-023-00753-8

Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality-based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034–2049. DOI: 10.1111/bjet.13028

Matovu, H., Ungu, D. A. K., Won, M., Tsai, C. C., Treagust, D. F., Mocerino, M., & Tasker, R. (2023). Immersive virtual reality for science learning: Design, implementation, and evaluation. Studies in Science Education, 59(2), 205–244. DOI: 10.1080/03057267.2022.2082680

Oliveira, T. R. de, Martinelli, T. F., Bello, B. P., Batista, J. D., Silva, M. M. da, Rodrigues, B. B., Spinassé, R. A. N., Andreão, R. V., Schimidt, M. Q., & Mestria, M. (2020). Virtual Reality System for Industrial Motor Maintenance Training. In 2020 22nd Symposium on Virtual and Augmented Reality (SVR), 119–128. DOI: 10.1109/SVR51698.2020.00031

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. [link]

Rahman, O. F., Kunze, K. N., Yao, K., Kwiecien, S. Y., Ranawat, A. S., Banffy, M. B., Kelly, B. T., & Galano, G. J. (2024). Hip Arthroscopy Simulator Training With Immersive Virtual Reality Has Similar Effectiveness to Nonimmersive Virtual Reality. Arthroscopy: The Journal of Arthroscopic & Related Surgery. DOI: 10.1016/j.arthro.2024.02.042

Sancho-Esper, F., Ostrovskaya, L., Rodriguez-Sanchez, C., & Campayo-Sanchez, F. (2023). Virtual reality in retirement communities: Technology acceptance and tourist destination recommendation. Journal of Vacation Marketing, 29(2), 275–290. DOI: 10.1177/13567667221080567

Shao-Chen Chang, Y. N. C., Hsu, T. C., & Jong, M. S. Y. (2020). The effects of spherical video-based virtual reality implementation on students’ natural science learning effectiveness. Interactive Learning Environments, 28(7), 915–929. DOI: 10.1080/10494820.2018.1548490

Zhu, W., Fan, X., & Zhang, Y. (2019). Applications and research trends of digital human models in the manufacturing industry. Virtual Reality & Intelligent Hardware, 1(6), 558–579. DOI: 10.1016/j.vrih.2019.09.005
Publicado
30/09/2024
BORGES, Luiz F. M. R. et al. Inspection and Training using Virtual Reality Applied a new Wheel Loader Model. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 113-121.