Introduction to Gauss’s Law in Electromagnetism through a Virtual Reality Application
Resumo
Virtual reality (VR) has emerged as a transformative technology in recent years, while Gauss’s law of electromagnetism remains a fundamental principle within Maxwell’s equations. Gauss’s law relates the net electric flux through a closed surface to the charge enclosed within that surface and is particularly useful in scenarios with high symmetry in charge or field configurations. This paper explores the application of Gauss’s law through VR technology to enhance educational outcomes. By providing immersive and interactive experiences, VR enables students to visualize electric fields and flux in three dimensions, interact with closed surfaces, and experiment with dynamic charge configurations. This approach not only strengthens theoretical understanding but also promotes collaborative learning and engagement. Integrating Gauss’s law with VR technology helps bridge the gap between abstract electromagnetic concepts and practical comprehension, making advanced studies in electromagnetism more accessible and engaging. This work focuses on the development of the computational framework, with initial qualitative results from one-semester undergraduate students presented. Quantitative analysis of the impact will be addressed in future research.
Palavras-chave:
Gauss’s Law, Maxwell’s equations, Electric flux, Electric field, Virtual reality, Educational technology, Innovation, Learning
Referências
Aparicio-Gómez, O.-Y., Ostos-Ortiz, O.-L., & Abadía-García, C. (2024). Convergence between emerging technologies and active methodologies in the university. Journal of Technology and Science Education, 14(1), 31-44. DOI: 10.3926/jotse.2508
Borges, L. F. M. R., Viana, P. H. P., Oliveira, T. R., Martins, T. S., Andreão, R. V., Schimidt, M., & Mestria, M. (2024). Evaluating Virtual Reality Simulations for Wheel Loader Inspection. In Proceedings of the 25th Symposium on Virtual and Augmented Reality (SVR ’23). Association for Computing Machinery, New York, NY, USA, 8-16. DOI: 10.1145/3625008.3625010
Crittenden, W. F., Biel, I. K., & Lovely, W. A. (2019). Embracing Digitalization: Student Learning and New Technologies. Journal of Marketing Education, 41(1), 5-14.
Halliday, D., Resnick, R., & Krane, K. S. (1984). Fisica 3 (Vol. 3). LTC.
Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, pp. 904-908). Sage publications.
Kim, Y. M., & Rhiu, I. (2024). Development of a virtual reality system usability questionnaire (VRSUQ). Applied Ergonomics, 119, 104319.
Korkut, E. H., & Surer, E. (2023). Visualization in virtual reality: a systematic review. Virtual Reality, 27, 1447-1480. DOI: 10.1007/s10055-023-00753-8
Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality-based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034-2049. DOI: 10.1111/bjet.13028
Matovu, H., Ungu, D. A. K., Won, M., Tsai, C.-C., Treagust, D. F., Mocerino, M., & Tasker, R. (2023). Immersive virtual reality for science learning: Design, implementation, and evaluation. Studies in Science Education, 59(2), 205-244.
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778.
Rahman, O. F., Kunze, K. N., Yao, K., Kwiecien, S. Y., Ranawat, A. S., Banffy, M. B., Kelly, B. T., & Galano, G. J. (2024). Hip Arthroscopy Simulator Training With Immersive Virtual Reality Has Similar Effectiveness to Nonimmersive Virtual Reality. Arthroscopy: The Journal of Arthroscopic & Related Surgery. DOI: 10.1016/j.arthro.2024.02.042
Sancho-Esper, F., Ostrovskaya, L., Rodriguez-Sanchez, C., & Campayo-Sanchez, F. (2023). Virtual reality in retirement communities: Technology acceptance and tourist destination recommendation. Journal of Vacation Marketing, 29(2), 275-290. DOI: 10.1177/13567667221080567
Shao-Chen, Y.-N., Chang, T.-C., Hsu, T.-C., & Jong, M. S. Y. (2020). The effects of spherical video-based virtual reality implementation on students’ natural science learning effectiveness. Interactive Learning Environments, 28(7), 915-929. DOI: 10.1080/10494820.2018.1548490
Tipler, P. A., & Mosca, G. (2007). Physics for Scientists and Engineers. Macmillan.
Borges, L. F. M. R., Viana, P. H. P., Oliveira, T. R., Martins, T. S., Andreão, R. V., Schimidt, M., & Mestria, M. (2024). Evaluating Virtual Reality Simulations for Wheel Loader Inspection. In Proceedings of the 25th Symposium on Virtual and Augmented Reality (SVR ’23). Association for Computing Machinery, New York, NY, USA, 8-16. DOI: 10.1145/3625008.3625010
Crittenden, W. F., Biel, I. K., & Lovely, W. A. (2019). Embracing Digitalization: Student Learning and New Technologies. Journal of Marketing Education, 41(1), 5-14.
Halliday, D., Resnick, R., & Krane, K. S. (1984). Fisica 3 (Vol. 3). LTC.
Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, pp. 904-908). Sage publications.
Kim, Y. M., & Rhiu, I. (2024). Development of a virtual reality system usability questionnaire (VRSUQ). Applied Ergonomics, 119, 104319.
Korkut, E. H., & Surer, E. (2023). Visualization in virtual reality: a systematic review. Virtual Reality, 27, 1447-1480. DOI: 10.1007/s10055-023-00753-8
Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality-based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034-2049. DOI: 10.1111/bjet.13028
Matovu, H., Ungu, D. A. K., Won, M., Tsai, C.-C., Treagust, D. F., Mocerino, M., & Tasker, R. (2023). Immersive virtual reality for science learning: Design, implementation, and evaluation. Studies in Science Education, 59(2), 205-244.
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778.
Rahman, O. F., Kunze, K. N., Yao, K., Kwiecien, S. Y., Ranawat, A. S., Banffy, M. B., Kelly, B. T., & Galano, G. J. (2024). Hip Arthroscopy Simulator Training With Immersive Virtual Reality Has Similar Effectiveness to Nonimmersive Virtual Reality. Arthroscopy: The Journal of Arthroscopic & Related Surgery. DOI: 10.1016/j.arthro.2024.02.042
Sancho-Esper, F., Ostrovskaya, L., Rodriguez-Sanchez, C., & Campayo-Sanchez, F. (2023). Virtual reality in retirement communities: Technology acceptance and tourist destination recommendation. Journal of Vacation Marketing, 29(2), 275-290. DOI: 10.1177/13567667221080567
Shao-Chen, Y.-N., Chang, T.-C., Hsu, T.-C., & Jong, M. S. Y. (2020). The effects of spherical video-based virtual reality implementation on students’ natural science learning effectiveness. Interactive Learning Environments, 28(7), 915-929. DOI: 10.1080/10494820.2018.1548490
Tipler, P. A., & Mosca, G. (2007). Physics for Scientists and Engineers. Macmillan.
Publicado
30/09/2024
Como Citar
BORGES, Luiz Felipe M. R.; ANDREÃO, Rodrigo Varejão; SCHIMIDT, Marcelo Queiroz; MESTRIA, Mário; DIAS, Gilmar S.; MARQUES, Célio.
Introduction to Gauss’s Law in Electromagnetism through a Virtual Reality Application. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 128-133.