Simulation Sickness in Virtual Reality Games, How to Relieve it - Systematic Literature Study

Resumo


Immersive technologies have introduced innovative possibilities across various fields, including entertainment, sports, education, healthcare, training, and rehabilitation. Despite the increasing popularity and feasibility of these technologies, owing to their ability to create a heightened sense of presence, a significant challenge remains in the widespread adoption of virtual reality: simulation sickness, also known as cybersickness. This phenomenon manifests as symptoms such as nausea, dizziness, and fatigue, arising from factors like sensory discrepancies between real and virtual movements, latency, graphic quality, and individual susceptibility. This article aims to provide a comprehensive review of the current literature on cybersickness, exploring its causes and identifying methods to mitigate its adverse effects through advancements in hardware, software, and usability settings, ultimately striving for a more comfortable and positive virtual experience.
Palavras-chave: Cybersickness, Virtual Reality, Simulation Sickness, Causes, Symptoms

Referências

Beadle, S. (2019). Simulator Sickness Coping Strategies: Findings From Reddit. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 2262–2266. DOI: 10.1177/1071181319631043

Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual Reality Sickness: A Review of Causes and Measurements. International Journal of Human–Computer Interaction, 36(17), 1658–1682. DOI: 10.1080/10447318.2020.1778351

Cmentowski, S., Krekhov, A., & Krüger, J. (2019). Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’19), 287–299. DOI: 10.1145/3311350.3347183

Dilanchian, A., Andringa, R., & Boot, W. (2021). A Pilot Study Exploring Age Differences in Presence, Workload, and Cybersickness in the Experience of Immersive Virtual Reality Environments. Frontiers in Virtual Reality, 2, 736793. DOI: 10.3389/frvir.2021.736793

Garcia Agundez Garcia, A., Reuter, C., Becker, H., Konrad, R., Caserman, P., Miede, A., & Göbel, S. (2019). Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments. Games for Health Journal, 8(07), 29249–29258. DOI: 10.1089/g4h.2019.0045

Gonçalves, G., Monteiro, P., Melo, M., Vasconcelos-Raposo, J., & Bessa, M. (2020). A Comparative Study Between Wired and Wireless Virtual Reality Setups. IEEE Access, 8, 29249–29258. DOI: 10.1109/ACCESS.2020.2970921

Groth, C., Tauscher, J.-P., Heesen, N., Hattenbach, M., Castillo, S., & Magnor, M. (2022). Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 28(5), 2234–2244. DOI: 10.1109/TVCG.2022.3150506

ICD. (2019). ICD-10 Version:2019. World Health Organization. Available at: [link]. Accessed in: May 08 2024.

Jin, W., Fan, J., Gromala, D., & Pasquier, P. (2018). Automatic Prediction of Cybersickness for Virtual Reality Games. In 2018 IEEE Games, Entertainment, Media Conference (GEM), 1–9. DOI: 10.1109/GEM.2018.8516469

Kitchenham, B., Madeyski, L., & Budgen, D. (2023). SEGRESS: Software Engineering Guidelines for REporting Secondary Studies. IEEE Transactions on Software Engineering, 49(3), 1273–1298. DOI: 10.1109/TSE.2022.3174092

Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2019). Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Frontiers in Human Neuroscience, 13, 417. DOI: 10.3389/fnhum.2019.00417

Kraus, M. (2020). On the Preference for Travel by Steering in a Virtual Reality Game. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 341–346. DOI: 10.5220/0009102803410346

Li, N., Zhang, Z., Liu, C., Yang, Z., Fu, Y., Tian, F., Han, T., & Fan, M. (2021). vMirror: Enhancing the Interaction with Occluded or Distant Objects in VR with Virtual Mirrors. In CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. DOI: 10.1145/3411764.3445537

Li, R., Peterson, N., Walter, H., Rath, R., Curry, C., & Stoffregen, T. (2018). Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness. Gait & Posture, 65, 29249–29258. DOI: 10.1016/j.gaitpost.2018.08.005

Lugrin, J.-L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., & Lessiter, J. (2012). CaveUDK: a VR game engine middleware. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST ’12), 137–144. DOI: 10.1145/2407336.2407363

Líndal, P. J., Jóhannsdóttir, K. R., Kristjánsson, U., Lensing, N., Stühmeier, A., Wohlan, A., & Vilhjálmsson, H. H. (2018). Comparison of Teleportation and Fixed Track Driving in VR. In 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), 1–7. DOI: 10.1109/VS-Games.2018.8493414

Maneuvrier, A., Ceyte, H., Renaud, P., Morello, R., Fleury, P., & Decker, L. (2022). Virtual reality and neuropsychological assessment: an analysis of human factors influencing performance and perceived mental effort. Virtual Reality, 26, 29249–29258. DOI: 10.1007/s10055-022-00698-4

Monteiro, D., Liang, H.-N., Tang, X., & Irani, P. (2021). Using Trajectory Compression Rate to Predict Changes in Cybersickness in Virtual Reality Games. In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 138–146. DOI: 10.1109/ISMAR52148.2021.00028

Oh, H., & Lee, G. (2021). Feasibility of Full Immersive Virtual Reality Video Game on Balance and Cybersickness of Healthy Adolescents. Neuroscience Letters, 760, 136063. DOI: 10.1016/j.neulet.2021.136063

Porcino, T., Trevisan, D., & Clua, E. (2021). A cybersickness review: causes, strategies, and classification methods. Journal on Interactive Systems, 12(1), 269–282. DOI: 10.5753/jis.2021.2058

Rebenitsch, L., & Owen, C. (2014). Individual variation in susceptibility to cybersickness. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14), 309–317. DOI: 10.1145/2642918.2647394

Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203–220. DOI: 10.1207/s15327108ijap0303_3

Rosa, P. J., Morais, D., Gamito, P., Oliveira, J., & Saraiva, T. (2016). The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique. Cyberpsychology, Behavior and Social Networking, 19(3), 209–216.

Rupp, M. A. (2024). Is it getting hot in here? The effects of VR headset microclimate temperature on perceived thermal discomfort, VR sickness, and skin temperature. Applied Ergonomics, 114, 104128. DOI: 10.1016/j.apergo.2023.104128

Salen Tekinbas, K., & Zimmerman, E. (2003). Rules of play: Game design fundamentals.

Saredakis, D., Szpak, A., Birckhead, B., Keage, H. A. D., Rizzo, A., & Loetscher, T. (2020). Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience, 14, 96. DOI: 10.3389/fnhum.2020.00096

Schuhbauer, P., Muth, L., Grötsch, J., Wiesneth, J., Dengler, J., Kocur, M., & Lankes, M. (2019). Hover Loop: A New Approach to Locomotion in Virtual Reality. In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts (CHI PLAY ’19 Extended Abstracts), 111–116. DOI: 10.1145/3341215.3356984

Soler-Dominguez, J., de Juan Ripoll, C., Camba, J. D., Contero, M., & Alcañiz Raya, M. (2019). Gaming Background Influence on VR Performance and Comfort: A Study Using Different Navigation Metaphors. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 646–656. DOI: 10.1007/978-3-030-23560-4_47

Stoffregen, T., Chang, C.-H., Chen, F.-C., & Zeng, W.-J. (2017). Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLOS ONE, 12(11), e0187120. DOI: 10.1371/journal.pone.0187120

Szpak, A., Michalski, S. C., Saredakis, D., Chen, C. S., & Loetscher, T. (2019). Beyond feeling sick: the visual and cognitive aftereffects of virtual reality. IEEE Access, 7, 130883–130892.

Teixeira, J., Miellet, S., & Palmisano, S. (2022). Unexpected Vection Exacerbates Cybersickness During HMD-Based Virtual Reality. Frontiers in Virtual Reality, 3. DOI: 10.3389/frvir.2022.860919

Vlahovic, S., Suznjevic, M., Pavlin-Bernardic, N., & Skorin-Kapov, L. (2021). The Effect of VR Gaming on Discomfort, Cybersickness, and Reaction Time. Proceedings of the IEEE International Symposium on Quality of Multimedia Experience (QoMEX 2021), 163–168. DOI: 10.1109/QoMEX51781.2021.9465470

Wu, F., Bailey, G. S., Stoffregen, T., & Rosenberg, E. S. (2021). Don’t Block the Ground: Reducing Discomfort in Virtual Reality with an Asymmetric Field-of-View Restrictor. In Proceedings of the 2021 ACM Symposium on Spatial User Interaction (SUI ’21), Article 2, 1–10. DOI: 10.1145/3485279.3485284

Wu, H., & Tu, H. (2023). Using Deep Learning And Virtual Reality To Build An Animation Game For The Healthcare Education. Journal of Mechanics in Medicine and Biology, 23(4), 2340052. DOI: 10.1142/S0219519423400523
Publicado
30/09/2024
PEREIRA, Milena Batalha; LANCELOTTE, Felipe da Silva; DE CLASSE, Tadeu Moreira; GARCIA, Ana Cristina Bicharra. Simulation Sickness in Virtual Reality Games, How to Relieve it - Systematic Literature Study. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 168-176.