Simulation Sickness in Virtual Reality Games, How to Relieve it - Systematic Literature Study
Resumo
Immersive technologies have introduced innovative possibilities across various fields, including entertainment, sports, education, healthcare, training, and rehabilitation. Despite the increasing popularity and feasibility of these technologies, owing to their ability to create a heightened sense of presence, a significant challenge remains in the widespread adoption of virtual reality: simulation sickness, also known as cybersickness. This phenomenon manifests as symptoms such as nausea, dizziness, and fatigue, arising from factors like sensory discrepancies between real and virtual movements, latency, graphic quality, and individual susceptibility. This article aims to provide a comprehensive review of the current literature on cybersickness, exploring its causes and identifying methods to mitigate its adverse effects through advancements in hardware, software, and usability settings, ultimately striving for a more comfortable and positive virtual experience.
Palavras-chave:
Cybersickness, Virtual Reality, Simulation Sickness, Causes, Symptoms
Referências
Beadle, S. (2019). Simulator Sickness Coping Strategies: Findings From Reddit. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 2262–2266. DOI: 10.1177/1071181319631043
Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual Reality Sickness: A Review of Causes and Measurements. International Journal of Human–Computer Interaction, 36(17), 1658–1682. DOI: 10.1080/10447318.2020.1778351
Cmentowski, S., Krekhov, A., & Krüger, J. (2019). Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’19), 287–299. DOI: 10.1145/3311350.3347183
Dilanchian, A., Andringa, R., & Boot, W. (2021). A Pilot Study Exploring Age Differences in Presence, Workload, and Cybersickness in the Experience of Immersive Virtual Reality Environments. Frontiers in Virtual Reality, 2, 736793. DOI: 10.3389/frvir.2021.736793
Garcia Agundez Garcia, A., Reuter, C., Becker, H., Konrad, R., Caserman, P., Miede, A., & Göbel, S. (2019). Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments. Games for Health Journal, 8(07), 29249–29258. DOI: 10.1089/g4h.2019.0045
Gonçalves, G., Monteiro, P., Melo, M., Vasconcelos-Raposo, J., & Bessa, M. (2020). A Comparative Study Between Wired and Wireless Virtual Reality Setups. IEEE Access, 8, 29249–29258. DOI: 10.1109/ACCESS.2020.2970921
Groth, C., Tauscher, J.-P., Heesen, N., Hattenbach, M., Castillo, S., & Magnor, M. (2022). Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 28(5), 2234–2244. DOI: 10.1109/TVCG.2022.3150506
ICD. (2019). ICD-10 Version:2019. World Health Organization. Available at: [link]. Accessed in: May 08 2024.
Jin, W., Fan, J., Gromala, D., & Pasquier, P. (2018). Automatic Prediction of Cybersickness for Virtual Reality Games. In 2018 IEEE Games, Entertainment, Media Conference (GEM), 1–9. DOI: 10.1109/GEM.2018.8516469
Kitchenham, B., Madeyski, L., & Budgen, D. (2023). SEGRESS: Software Engineering Guidelines for REporting Secondary Studies. IEEE Transactions on Software Engineering, 49(3), 1273–1298. DOI: 10.1109/TSE.2022.3174092
Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2019). Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Frontiers in Human Neuroscience, 13, 417. DOI: 10.3389/fnhum.2019.00417
Kraus, M. (2020). On the Preference for Travel by Steering in a Virtual Reality Game. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 341–346. DOI: 10.5220/0009102803410346
Li, N., Zhang, Z., Liu, C., Yang, Z., Fu, Y., Tian, F., Han, T., & Fan, M. (2021). vMirror: Enhancing the Interaction with Occluded or Distant Objects in VR with Virtual Mirrors. In CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. DOI: 10.1145/3411764.3445537
Li, R., Peterson, N., Walter, H., Rath, R., Curry, C., & Stoffregen, T. (2018). Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness. Gait & Posture, 65, 29249–29258. DOI: 10.1016/j.gaitpost.2018.08.005
Lugrin, J.-L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., & Lessiter, J. (2012). CaveUDK: a VR game engine middleware. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST ’12), 137–144. DOI: 10.1145/2407336.2407363
Líndal, P. J., Jóhannsdóttir, K. R., Kristjánsson, U., Lensing, N., Stühmeier, A., Wohlan, A., & Vilhjálmsson, H. H. (2018). Comparison of Teleportation and Fixed Track Driving in VR. In 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), 1–7. DOI: 10.1109/VS-Games.2018.8493414
Maneuvrier, A., Ceyte, H., Renaud, P., Morello, R., Fleury, P., & Decker, L. (2022). Virtual reality and neuropsychological assessment: an analysis of human factors influencing performance and perceived mental effort. Virtual Reality, 26, 29249–29258. DOI: 10.1007/s10055-022-00698-4
Monteiro, D., Liang, H.-N., Tang, X., & Irani, P. (2021). Using Trajectory Compression Rate to Predict Changes in Cybersickness in Virtual Reality Games. In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 138–146. DOI: 10.1109/ISMAR52148.2021.00028
Oh, H., & Lee, G. (2021). Feasibility of Full Immersive Virtual Reality Video Game on Balance and Cybersickness of Healthy Adolescents. Neuroscience Letters, 760, 136063. DOI: 10.1016/j.neulet.2021.136063
Porcino, T., Trevisan, D., & Clua, E. (2021). A cybersickness review: causes, strategies, and classification methods. Journal on Interactive Systems, 12(1), 269–282. DOI: 10.5753/jis.2021.2058
Rebenitsch, L., & Owen, C. (2014). Individual variation in susceptibility to cybersickness. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14), 309–317. DOI: 10.1145/2642918.2647394
Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203–220. DOI: 10.1207/s15327108ijap0303_3
Rosa, P. J., Morais, D., Gamito, P., Oliveira, J., & Saraiva, T. (2016). The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique. Cyberpsychology, Behavior and Social Networking, 19(3), 209–216.
Rupp, M. A. (2024). Is it getting hot in here? The effects of VR headset microclimate temperature on perceived thermal discomfort, VR sickness, and skin temperature. Applied Ergonomics, 114, 104128. DOI: 10.1016/j.apergo.2023.104128
Salen Tekinbas, K., & Zimmerman, E. (2003). Rules of play: Game design fundamentals.
Saredakis, D., Szpak, A., Birckhead, B., Keage, H. A. D., Rizzo, A., & Loetscher, T. (2020). Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience, 14, 96. DOI: 10.3389/fnhum.2020.00096
Schuhbauer, P., Muth, L., Grötsch, J., Wiesneth, J., Dengler, J., Kocur, M., & Lankes, M. (2019). Hover Loop: A New Approach to Locomotion in Virtual Reality. In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts (CHI PLAY ’19 Extended Abstracts), 111–116. DOI: 10.1145/3341215.3356984
Soler-Dominguez, J., de Juan Ripoll, C., Camba, J. D., Contero, M., & Alcañiz Raya, M. (2019). Gaming Background Influence on VR Performance and Comfort: A Study Using Different Navigation Metaphors. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 646–656. DOI: 10.1007/978-3-030-23560-4_47
Stoffregen, T., Chang, C.-H., Chen, F.-C., & Zeng, W.-J. (2017). Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLOS ONE, 12(11), e0187120. DOI: 10.1371/journal.pone.0187120
Szpak, A., Michalski, S. C., Saredakis, D., Chen, C. S., & Loetscher, T. (2019). Beyond feeling sick: the visual and cognitive aftereffects of virtual reality. IEEE Access, 7, 130883–130892.
Teixeira, J., Miellet, S., & Palmisano, S. (2022). Unexpected Vection Exacerbates Cybersickness During HMD-Based Virtual Reality. Frontiers in Virtual Reality, 3. DOI: 10.3389/frvir.2022.860919
Vlahovic, S., Suznjevic, M., Pavlin-Bernardic, N., & Skorin-Kapov, L. (2021). The Effect of VR Gaming on Discomfort, Cybersickness, and Reaction Time. Proceedings of the IEEE International Symposium on Quality of Multimedia Experience (QoMEX 2021), 163–168. DOI: 10.1109/QoMEX51781.2021.9465470
Wu, F., Bailey, G. S., Stoffregen, T., & Rosenberg, E. S. (2021). Don’t Block the Ground: Reducing Discomfort in Virtual Reality with an Asymmetric Field-of-View Restrictor. In Proceedings of the 2021 ACM Symposium on Spatial User Interaction (SUI ’21), Article 2, 1–10. DOI: 10.1145/3485279.3485284
Wu, H., & Tu, H. (2023). Using Deep Learning And Virtual Reality To Build An Animation Game For The Healthcare Education. Journal of Mechanics in Medicine and Biology, 23(4), 2340052. DOI: 10.1142/S0219519423400523
Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual Reality Sickness: A Review of Causes and Measurements. International Journal of Human–Computer Interaction, 36(17), 1658–1682. DOI: 10.1080/10447318.2020.1778351
Cmentowski, S., Krekhov, A., & Krüger, J. (2019). Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’19), 287–299. DOI: 10.1145/3311350.3347183
Dilanchian, A., Andringa, R., & Boot, W. (2021). A Pilot Study Exploring Age Differences in Presence, Workload, and Cybersickness in the Experience of Immersive Virtual Reality Environments. Frontiers in Virtual Reality, 2, 736793. DOI: 10.3389/frvir.2021.736793
Garcia Agundez Garcia, A., Reuter, C., Becker, H., Konrad, R., Caserman, P., Miede, A., & Göbel, S. (2019). Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments. Games for Health Journal, 8(07), 29249–29258. DOI: 10.1089/g4h.2019.0045
Gonçalves, G., Monteiro, P., Melo, M., Vasconcelos-Raposo, J., & Bessa, M. (2020). A Comparative Study Between Wired and Wireless Virtual Reality Setups. IEEE Access, 8, 29249–29258. DOI: 10.1109/ACCESS.2020.2970921
Groth, C., Tauscher, J.-P., Heesen, N., Hattenbach, M., Castillo, S., & Magnor, M. (2022). Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 28(5), 2234–2244. DOI: 10.1109/TVCG.2022.3150506
ICD. (2019). ICD-10 Version:2019. World Health Organization. Available at: [link]. Accessed in: May 08 2024.
Jin, W., Fan, J., Gromala, D., & Pasquier, P. (2018). Automatic Prediction of Cybersickness for Virtual Reality Games. In 2018 IEEE Games, Entertainment, Media Conference (GEM), 1–9. DOI: 10.1109/GEM.2018.8516469
Kitchenham, B., Madeyski, L., & Budgen, D. (2023). SEGRESS: Software Engineering Guidelines for REporting Secondary Studies. IEEE Transactions on Software Engineering, 49(3), 1273–1298. DOI: 10.1109/TSE.2022.3174092
Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2019). Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Frontiers in Human Neuroscience, 13, 417. DOI: 10.3389/fnhum.2019.00417
Kraus, M. (2020). On the Preference for Travel by Steering in a Virtual Reality Game. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 341–346. DOI: 10.5220/0009102803410346
Li, N., Zhang, Z., Liu, C., Yang, Z., Fu, Y., Tian, F., Han, T., & Fan, M. (2021). vMirror: Enhancing the Interaction with Occluded or Distant Objects in VR with Virtual Mirrors. In CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. DOI: 10.1145/3411764.3445537
Li, R., Peterson, N., Walter, H., Rath, R., Curry, C., & Stoffregen, T. (2018). Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness. Gait & Posture, 65, 29249–29258. DOI: 10.1016/j.gaitpost.2018.08.005
Lugrin, J.-L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., & Lessiter, J. (2012). CaveUDK: a VR game engine middleware. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST ’12), 137–144. DOI: 10.1145/2407336.2407363
Líndal, P. J., Jóhannsdóttir, K. R., Kristjánsson, U., Lensing, N., Stühmeier, A., Wohlan, A., & Vilhjálmsson, H. H. (2018). Comparison of Teleportation and Fixed Track Driving in VR. In 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), 1–7. DOI: 10.1109/VS-Games.2018.8493414
Maneuvrier, A., Ceyte, H., Renaud, P., Morello, R., Fleury, P., & Decker, L. (2022). Virtual reality and neuropsychological assessment: an analysis of human factors influencing performance and perceived mental effort. Virtual Reality, 26, 29249–29258. DOI: 10.1007/s10055-022-00698-4
Monteiro, D., Liang, H.-N., Tang, X., & Irani, P. (2021). Using Trajectory Compression Rate to Predict Changes in Cybersickness in Virtual Reality Games. In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 138–146. DOI: 10.1109/ISMAR52148.2021.00028
Oh, H., & Lee, G. (2021). Feasibility of Full Immersive Virtual Reality Video Game on Balance and Cybersickness of Healthy Adolescents. Neuroscience Letters, 760, 136063. DOI: 10.1016/j.neulet.2021.136063
Porcino, T., Trevisan, D., & Clua, E. (2021). A cybersickness review: causes, strategies, and classification methods. Journal on Interactive Systems, 12(1), 269–282. DOI: 10.5753/jis.2021.2058
Rebenitsch, L., & Owen, C. (2014). Individual variation in susceptibility to cybersickness. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14), 309–317. DOI: 10.1145/2642918.2647394
Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203–220. DOI: 10.1207/s15327108ijap0303_3
Rosa, P. J., Morais, D., Gamito, P., Oliveira, J., & Saraiva, T. (2016). The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique. Cyberpsychology, Behavior and Social Networking, 19(3), 209–216.
Rupp, M. A. (2024). Is it getting hot in here? The effects of VR headset microclimate temperature on perceived thermal discomfort, VR sickness, and skin temperature. Applied Ergonomics, 114, 104128. DOI: 10.1016/j.apergo.2023.104128
Salen Tekinbas, K., & Zimmerman, E. (2003). Rules of play: Game design fundamentals.
Saredakis, D., Szpak, A., Birckhead, B., Keage, H. A. D., Rizzo, A., & Loetscher, T. (2020). Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience, 14, 96. DOI: 10.3389/fnhum.2020.00096
Schuhbauer, P., Muth, L., Grötsch, J., Wiesneth, J., Dengler, J., Kocur, M., & Lankes, M. (2019). Hover Loop: A New Approach to Locomotion in Virtual Reality. In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts (CHI PLAY ’19 Extended Abstracts), 111–116. DOI: 10.1145/3341215.3356984
Soler-Dominguez, J., de Juan Ripoll, C., Camba, J. D., Contero, M., & Alcañiz Raya, M. (2019). Gaming Background Influence on VR Performance and Comfort: A Study Using Different Navigation Metaphors. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), 646–656. DOI: 10.1007/978-3-030-23560-4_47
Stoffregen, T., Chang, C.-H., Chen, F.-C., & Zeng, W.-J. (2017). Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLOS ONE, 12(11), e0187120. DOI: 10.1371/journal.pone.0187120
Szpak, A., Michalski, S. C., Saredakis, D., Chen, C. S., & Loetscher, T. (2019). Beyond feeling sick: the visual and cognitive aftereffects of virtual reality. IEEE Access, 7, 130883–130892.
Teixeira, J., Miellet, S., & Palmisano, S. (2022). Unexpected Vection Exacerbates Cybersickness During HMD-Based Virtual Reality. Frontiers in Virtual Reality, 3. DOI: 10.3389/frvir.2022.860919
Vlahovic, S., Suznjevic, M., Pavlin-Bernardic, N., & Skorin-Kapov, L. (2021). The Effect of VR Gaming on Discomfort, Cybersickness, and Reaction Time. Proceedings of the IEEE International Symposium on Quality of Multimedia Experience (QoMEX 2021), 163–168. DOI: 10.1109/QoMEX51781.2021.9465470
Wu, F., Bailey, G. S., Stoffregen, T., & Rosenberg, E. S. (2021). Don’t Block the Ground: Reducing Discomfort in Virtual Reality with an Asymmetric Field-of-View Restrictor. In Proceedings of the 2021 ACM Symposium on Spatial User Interaction (SUI ’21), Article 2, 1–10. DOI: 10.1145/3485279.3485284
Wu, H., & Tu, H. (2023). Using Deep Learning And Virtual Reality To Build An Animation Game For The Healthcare Education. Journal of Mechanics in Medicine and Biology, 23(4), 2340052. DOI: 10.1142/S0219519423400523
Publicado
30/09/2024
Como Citar
PEREIRA, Milena Batalha; LANCELOTTE, Felipe da Silva; DE CLASSE, Tadeu Moreira; GARCIA, Ana Cristina Bicharra.
Simulation Sickness in Virtual Reality Games, How to Relieve it - Systematic Literature Study. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 168-176.