The challenge of stress induction in serious games, considering gameplay

Resumo


Stress induction is crucial for training personnel in high-pressure situations, such as military, first responders, and healthcare professionals. The ability to perform effectively under stress is a critical skill for these professionals, as their decisions can have significant consequences. One of the most effective methods for inducing stress in training scenarios is through the use of virtual environments. Virtual Reality (VR) and Augmented Reality (AR) technologies have become increasingly sophisticated, allowing for the creation of highly realistic and immersive training environments. These technologies can simulate a wide range of scenarios, from battlefield conditions for military personnel to emergency response situations for first responders and complex surgical procedures for healthcare professionals. This type of training aims to prepare individuals to respond effectively in real-life scenarios, enhancing resilience and decision-making abilities under stress. Measuring stress levels during these trainings is essential to assess program effectiveness and adjust methodologies as needed. By monitoring physiological and psychological stress indicators, such as heart rate variability, cortisol levels, and self-reported stress scales, trainers can determine if the scenarios are inducing the desired level of stress. This measurement ensures that participants are genuinely engaged in the training, allowing for real-time adjustments to the intensity and nature of the scenarios to maximize the training benefits. Additionally, it helps in verifying that the participant is fully immersed and responding realistically to the simulated high-pressure environment, ensuring the training’s relevance and effectiveness. Therefore, through a Systematic Literature Review, this study investigated the best biomarkers and their combinations and protocols used, aiming to determine the most effective way to measure stress induction in training to improve their efficiency.
Palavras-chave: Psychophysiology, Stress, Serious Games, Virtual Environments, Virtual Reality

Referências

Galvanic Skin Response module (GSR module) EEG BCI. Retrieved from [link]. Accessed: 2024-06-18.

Abd-Alhamid, F., Kent, M., Calautit, J., & Wu, Y. (2020). Evaluating the impact of viewing location on view perception using a virtual environment. Building and Environment, 180, 106932. DOI: 10.1016/j.buildenv.2020.106932

Bermudez, S., Quintero, L. V., Cameirão, M. S., Chirico, A., Triberti, S., Cipresso, P., & Gaggioli, A. (2019). Toward Emotionally Adaptive Virtual Reality for Mental Health Applications. IEEE Journal of Biomedical and Health Informatics, 23(5), 1877–1887. DOI: 10.1109/JBHI.2018.2878846

Bolls, P., Lang, A., & Potter, R. (2001). The Effects of Message Valence and Listener Arousal on Attention, Memory, and Facial Muscular Responses to Radio Advertisements. Communication Research, 28, 627–651. DOI: 10.1177/009365001028005003

Bzdúšková, D., Marko, M., Hirjaková, Z., Kimijanová, J., Hlavačka, F., & Riečanský, I. (2022). The Effects of Virtual Height Exposure on Postural Control and Psychophysiological Stress Are Moderated by Individual Height Intolerance. Frontiers in Human Neuroscience, 15, 773091. DOI: 10.3389/fnhum.2021.773091

Delahaij, R., van Dam, K., Gaillard, A., & Soeters, J. (2011). Predicting Performance Under Acute Stress: The Role of Individual Characteristics. International Journal of Stress Management, 18(1), 49–66. DOI: 10.1037/a0020891

Kawano, L. L. B. D. R. (2018). A condutância da pele como indicador de ativação emocional em mensagens persuasivas: um estudo do trailer de divulgação do filme “50 tons de liberdade”.

Drachen, A., Yannakakis, G., Nacke, L., & Pedersen, A. (2010). Correlation between Heart Rate, Electrodermal Activity and Player Experience in First-Person Shooter Games (Pre-print). DOI: 10.1145/1836135.1836143

Economou, K., Quek, D., MacDougall, H., Lewis, S. J. G., & Ehgoetz Martens, K. A. (2021). Heart Rate Changes Prior to Freezing of Gait Episodes Are Related to Anxiety. Journal of Parkinson’s Disease, 11(1), 271–282. DOI: 10.3233/jpd-202146

Ergan, S., Radwan, A., Zou, Z., Tseng, H., & Han, X. (2018). Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. Journal of Computing in Civil Engineering, 33(12), 0812. DOI: 10.1061/(ASCE)CP.1943-5487.0000812

Fenz, W. D., & Epstein, S. (1967). Gradients of physiological arousal in parachutists as a function of an approaching jump. Psychosomatic Medicine.

Finseth, T., Keren, N., Dorneich, M., Franke, W., Anderson, C., & Shelley, M. (2018). Evaluating the Effectiveness of Graduated Stress Exposure in Virtual Spaceflight Hazard Training. Journal of Cognitive Engineering and Decision Making, 12, 155534341877556. DOI: 10.1177/1555343418775561

Gamito, P., Oliveira, J., Silva, J., Rosa, J., Mendes, M. L. R., Dias, R., Dias, F., Mansuklal, S. A., Cartaxo, J., António, H., & Salvador, Á. (2024). Stress Inoculation in Police Officers Using Virtual Reality: A Controlled Study. Cyberpsychology, Behavior, and Social Networking. DOI: 10.1089/cyber.2023.0385

Gramlich, M. A., Smolenski, D. J., Norr, A. M., Rothbaum, B. O., Rizzo, A. A., Andrasik, F., Fantelli, E., & Reger, G. M. (2021). Psychophysiology during exposure to trauma memories: Comparative effects of virtual reality and imaginal exposure for posttraumatic stress disorder. Depression and Anxiety, 38(6), 626–638. DOI: 10.1002/da.23141

Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 34(2), 163–171. DOI: 10.1016/j.psyneuen.2008.10.026

Kim, K., Rosenthal, M. Z., Zielinski, D. J., & Brady, R. (2014). Effects of virtual environment platforms on emotional responses. Computer Methods and Programs in Biomedicine, 113(3), 882–893. DOI: 10.1016/j.cmpb.2013.12.024

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7–15.

Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen, M., Järvelä, S., & Ravaja, N. (2011). A review of the use of psychophysiological methods in game research. Journal of Gaming Virtual Worlds, 3(3), 181–199. DOI: 10.1386/jgvw.3.3.181_1

Kosonogov, V. V., Efimov, K. V., Rakhmankulova, Z. K., & Zyabreva, I. A. (2023). Review of Psychophysiological and Psychotherapeutic Studies of Stress Using Virtual Reality Technologies. Neuroscience and Behavioral Physiology, 53(1), 81–91. DOI: 10.1007/s11055-023-01393-w

Loureiro, J. P., Pino, A. V., & Jandre, F. C. (2019). Time-Normalized Discrete Amplitude Response Variations as New Indices of Electrodermal Activity, Costa-Felix R., Alvarenga A. V., & Machado J. C. (Eds.). IFMBE Proceedings, 70, 493–496. DOI: 10.1007/978-981-13-2517-5_74

Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. DOI: 10.1093/acprof/9780195058239.001.0001

Maples-Keller, J. L., Rauch, S. A. M., Jovanovic, T., Yasinski, C. W., Goodnight, J. M., Sherrill, A., Black, K., Michopoulos, V., Dunlop, B. W., Rothbaum, B. O., & Norrholm, S. D. (2019). Changes in trauma-potentiated startle, skin conductance, and heart rate within prolonged exposure therapy for PTSD in high and low treatment responders. Journal of Anxiety Disorders, 68, 102147. DOI: 10.1016/j.janxdis.2019.102147

Moreno-Fernández, R. D., García-León, D., Peñas, G., Martín-Romero, R., Buades-Sitjar, F., & Sampedro-Piquero, P. (2023). Immersive virtual plus-maze to examine behavior and psychophysiological-related variables in young people with problematic alcohol and cannabis consumption. Neurobiology of Stress, 26, 100564. DOI: 10.1016/j.ynstr.2023.100564

Binsch, O. (2021). Testing the applicability of a virtual reality simulation platform for stress training of first responders. Military Psychology: The Official Journal of the Division of Military Psychology, American Psychological Association.

Pallavicini, F., Cipresso, P., Raspelli, S., Grassi, A., Serino, S., Vigna, C., Triberti, S., Villamira, M., Gaggioli, A., & Riva, G. (2013). Is virtual reality always an effective stressor for exposure treatments? Some insights from a controlled trial. BMC Psychiatry, 13, 52. DOI: 10.1186/1471-244X-13-52

Ribeiro, G., Rogers, K., Altmeyer, M., Terkildsen, T., & Nacke, L. E. (2020). Game Atmosphere: Effects of Audiovisual Thematic Cohesion on Player Experience and Psychophysiology. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (Virtual Event, Canada) (CHI PLAY ’20), 107–119. DOI: 10.1145/3410404.3414245

Richesin, M., Oliver, M., Baldwin, D., & Wicks, L. (2019). Game Face Expressions and Performance on Competitive Tasks. Stress and Health, 36. DOI: 10.1002/smi.2899

Schell, A., & Dawson, M. E. (2001). Psychophysiology. In International Encyclopedia of the Social Behavioral Sciences, Neil J. Smelser & Paul B. Baltes (Eds.). Pergamon, Oxford, 12448–12452. DOI: 10.1016/B0-08-043076-7/03424-0

Turbyne, C., de Koning, P., Smit, D., & Denys, D. (2021). Affective and Physiological Responses During Acute Pain in Virtual Reality: The Effect of First-Person Versus Third-Person Perspective. Frontiers in Virtual Reality, 2. DOI: 10.3389/frvir.2021.694511

van der Vijgh, B., Beun, R. J., Rood, M., & Werkhoven, P. (2015). Meta-analysis of digital game and study characteristics eliciting physiological stress responses: Meta-analysis of stressor game and methodologies. Psychophysiology, 2015, 1–19. DOI: 10.1111/psyp.12431

Rao, K. P. V., Ashwini, H. K., & Akshatha, S. (2021). Emotional stress recognition system using EEG and psychophysiological signals. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 1–6. DOI: 10.1109/ICAECA52838.2021.9675782

Wout, M., Spofford, C., Unger, W., Sevin, E., & Shea, T. (2017). Skin Conductance Reactivity to Standardized Virtual Reality Combat Scenes in Veterans with PTSD. Applied Psychophysiology and Biofeedback, 42. DOI: 10.1007/s10484-017-9366-0

Xiao, Y., Sharma, H., Zhang, Z., Bergen-Cico, D., Rahman, T., & Salekin, A. (2024). Reading Between the Heat: Co-Teaching Body Thermal Signatures for Non-intrusive Stress Detection. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7(4), Article 189. DOI: 10.1145/3631441

Yin, J., Zhu, S., Macnaughton, P., Allen, J., & Spengler, J. (2018). Physiological and cognitive performance of exposure to biophilic indoor environment. Building and Environment, 132, 1–6. DOI: 10.1016/j.buildenv.2018.01.006

Zimmer, P., Wu, C. C., & Domes, G. (2019). Same same but different? Replicating the real surroundings in a virtual trier social stress test (TSST-VR) does not enhance presence or the psychophysiological stress response. Physiology and Behavior, 212, 112690. DOI: 10.1016/j.physbeh.2019.112690
Publicado
30/09/2024
GONÇALVES, Thiago da Silva; SILVA-CALPA, Greis Francy M.; PORCINO, Thiago Malheiros; E ALMEIDA, Raphael de Souza; RAPOSO, Alberto Barbosa. The challenge of stress induction in serious games, considering gameplay. In: SIMPÓSIO DE REALIDADE VIRTUAL E AUMENTADA (SVR), 26. , 2024, Manaus/AM. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 177-184.