Bridging AI and Psychology: A RAG-Driven Approach to Inhibitory Control and ADHD Interventions
Resumo
This study explores the integration of Retrieval-Augmented Generation (RAG) into Artificial Intelligence (AI) systems to enhance psychological support, particularly in ADHD interventions and Inhibitory Control assessment. To achieve this, the GPT-4o model was used in conjunction with structured databases of therapeutic dialogues to improve mental health intervention, cognitive evaluation, and professional training. In addition, prompt engineering was used as an inference technique through text-based instructions, and an experimental evaluation was conducted using a predefined set of prompts designed to measure contextual consistency, ethical compliance, and technical accuracy. The results indicate that integrating retrieval mechanisms improves AI-generated responses by providing more contextually relevant and accurate information, demonstrating the model’s enhanced capability to process complex contextual queries.Referências
Abraham, T. M. Llms in medicine: Evaluations, advances, and the future.
Arslan, M., Ghanem, H., Munawar, S., and Cruz, C. (2024). A survey on rag with llms. Procedia Computer Science, 246:3781–3790. 28th International Conference on Knowledge Based and Intelligent Information and Engineering Systems (KES 2024).
Brodeur, P. G., Buckley, T. A., Kanjee, Z., Goh, E., Ling, E. B., Jain, P., Cabral, S., Abdulnour, R.-E., Haimovich, A., Freed, J. A., Olson, A., Morgan, D. J., Hom, J., Gallo, R., Horvitz, E., Chen, J., Manrai, A. K., and Rodman, A. (2024). Superhuman performance of a large language model on the reasoning tasks of a physician.
Castellanos, F. X. and Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience, 3(8):617–628.
Coghill, D. R., Seth, S., and Matthews, K. (2014). A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychological medicine, 44(9):1989–2001.
Das, S., Ge, Y., Guo, Y., Rajwal, S., Hairston, J., Powell, J., Walker, D., Peddireddy, S., Lakamana, S., Bozkurt, S., Reyna, M., Sameni, R., Xiao, Y., Kim, S., Chandler, R., Hernandez, N., Mowery, D., Wightman, R., Love, J., Spadaro, A., Perrone, J., and Sarker, A. (2025). Two-layer retrieval-augmented generation framework for low-resource medical question answering using reddit data: Proof-of-concept study. Journal of Medical Internet Research, 27:e66220.
Durstewitz, D., Koppe, G., and Meyer-Lindenberg, A. (2019). Deep neural networks in psychiatry. Molecular Psychiatry, 24(11):1583–1598.
Elendu, C., Amaechi, D. C., Okatta, A. U., Amaechi, E. C., Elendu, T. C., Ezeh, C. P., and Elendu, I. D. (2024). The impact of simulation-based training in medical education: A review. Medicine, 103(27):e38813.
Elhaddad, M. and Hamam, S. (2024). Ai-driven clinical decision support systems: An ongoing pursuit of potential. Cureus.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., and Wang, H. (2024). Retrieval-augmented generation for large language models: A survey.
Irshad, S., Azmi, S., and Begum, N. (2022). Uses of artificial intelligence in psychology. Journal of Health and Medical Sciences, 5(4).
Kang, W., Hernández, S. P., Rahman, M. S., Voigt, K., and Malvaso, A. (2022). Inhibitory control development: A network neuroscience perspective. Frontiers in Psychology, 13.
Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and tau Yih, W. (2020). Dense passage retrieval for open-domain question answering.
Khalifa, M., Albadawy, M., and Iqbal, U. (2024). Advancing clinical decision support: The role of artificial intelligence across six domains. Computer Methods and Programs in Biomedicine Update, 5:100142.
Kleine, A.-K., Kokje, E., Hummelsberger, P., Lermer, E., Schaffernak, I., and Gaube, S. (2025). Ai-enabled clinical decision support tools for mental healthcare: A product review. Artificial Intelligence in Medicine, 160:103052.
Kofler, M. J., Irwin, L. N., Soto, E. F., Groves, N. B., Harmon, S. L., and Sarver, D. E. (2018). Executive functioning heterogeneity in pediatric adhd. Journal of Abnormal Child Psychology, 47(2):273–286.
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., and Lemey, C. (2021). Machine learning and natural language processing in mental health: Systematic review. Journal of Medical Internet Research, 23(5):e15708.
Lee, E. E., Torous, J., De Choudhury, M., Depp, C. A., Graham, S. A., Kim, H.-C., Paulus, M. P., Krystal, J. H., and Jeste, D. V. (2021). Artificial intelligence for mental health care: Clinical applications, barriers, facilitators, and artificial wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(9):856–864.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rocktäschel, T., Riedel, S., and Kiela, D. (2021). Retrieval-augmented generation for knowledge-intensive nlp tasks.
Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice, 45(5):332–339.
MacIntyre, M. R., Cockerill, R. G., Mirza, O. F., and Appel, J. M. (2023). Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments. Psychiatry Research, 328:115466.
Nayinzira, J. P. and Adda, M. (2024). Sentimentcarebot: Retrieval-augmented generation chatbot for mental health support with sentiment analysis. Procedia Computer Science, 251:334–341.
Sanjeewa, R., Iyer, R., Apputhurai, P., Wickramasinghe, N., and Meyer, D. (2024a). Empathic conversational agent platform designs and their evaluation in the context of mental health: Systematic review. JMIR Mental Health, 11:e58974.
Sanjeewa, R., Iyer, R., Apputhurai, P., Wickramasinghe, N., and Meyer, D. (2024b). Empathic conversational agent platform designs and their evaluation in the context of mental health: Systematic review. JMIR Ment Health, 11:e58974.
Sonuga-Barke, E. J., Sergeant, J. A., Nigg, J., and Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child and adolescent psychiatric clinics of North America, 17(2):367–384.
Tutun, S., Johnson, M. E., Ahmed, A., Albizri, A., Irgil, S., Yesilkaya, I., Ucar, E. N., Sengun, T., and Harfouche, A. (2022). An ai-based decision support system for predicting mental health disorders. Information Systems Frontiers, 25(3):1261–1276.
Vaidyam, A. N., Linggonegoro, D., and Torous, J. (2020). Changes to the psychiatric chatbot landscape: A systematic review of conversational agents in serious mental illness: Changements du paysage psychiatrique des chatbots: une revue systématique des agents conversationnels dans la maladie mentale sérieuse. The Canadian Journal of Psychiatry, 66(4):339–348.
Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., and Torous, J. B. (2019). Chatbots and conversational agents in mental health: A review of the psychiatric landscape. The Canadian Journal of Psychiatry, 64(7):456–464. PMID: 30897957.
Walter, Y. (2024). Digital psychology: Introducing a conceptual impact model and the future of work. Trends in Psychology.
Weizenbaum, J. (1966). Eliza—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36–45.
Zhou, S., Zhao, J., and Zhang, L. (2022). Application of artificial intelligence on psychological interventions and diagnosis: An overview. Frontiers in Psychiatry, 13.
Arslan, M., Ghanem, H., Munawar, S., and Cruz, C. (2024). A survey on rag with llms. Procedia Computer Science, 246:3781–3790. 28th International Conference on Knowledge Based and Intelligent Information and Engineering Systems (KES 2024).
Brodeur, P. G., Buckley, T. A., Kanjee, Z., Goh, E., Ling, E. B., Jain, P., Cabral, S., Abdulnour, R.-E., Haimovich, A., Freed, J. A., Olson, A., Morgan, D. J., Hom, J., Gallo, R., Horvitz, E., Chen, J., Manrai, A. K., and Rodman, A. (2024). Superhuman performance of a large language model on the reasoning tasks of a physician.
Castellanos, F. X. and Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience, 3(8):617–628.
Coghill, D. R., Seth, S., and Matthews, K. (2014). A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychological medicine, 44(9):1989–2001.
Das, S., Ge, Y., Guo, Y., Rajwal, S., Hairston, J., Powell, J., Walker, D., Peddireddy, S., Lakamana, S., Bozkurt, S., Reyna, M., Sameni, R., Xiao, Y., Kim, S., Chandler, R., Hernandez, N., Mowery, D., Wightman, R., Love, J., Spadaro, A., Perrone, J., and Sarker, A. (2025). Two-layer retrieval-augmented generation framework for low-resource medical question answering using reddit data: Proof-of-concept study. Journal of Medical Internet Research, 27:e66220.
Durstewitz, D., Koppe, G., and Meyer-Lindenberg, A. (2019). Deep neural networks in psychiatry. Molecular Psychiatry, 24(11):1583–1598.
Elendu, C., Amaechi, D. C., Okatta, A. U., Amaechi, E. C., Elendu, T. C., Ezeh, C. P., and Elendu, I. D. (2024). The impact of simulation-based training in medical education: A review. Medicine, 103(27):e38813.
Elhaddad, M. and Hamam, S. (2024). Ai-driven clinical decision support systems: An ongoing pursuit of potential. Cureus.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., and Wang, H. (2024). Retrieval-augmented generation for large language models: A survey.
Irshad, S., Azmi, S., and Begum, N. (2022). Uses of artificial intelligence in psychology. Journal of Health and Medical Sciences, 5(4).
Kang, W., Hernández, S. P., Rahman, M. S., Voigt, K., and Malvaso, A. (2022). Inhibitory control development: A network neuroscience perspective. Frontiers in Psychology, 13.
Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and tau Yih, W. (2020). Dense passage retrieval for open-domain question answering.
Khalifa, M., Albadawy, M., and Iqbal, U. (2024). Advancing clinical decision support: The role of artificial intelligence across six domains. Computer Methods and Programs in Biomedicine Update, 5:100142.
Kleine, A.-K., Kokje, E., Hummelsberger, P., Lermer, E., Schaffernak, I., and Gaube, S. (2025). Ai-enabled clinical decision support tools for mental healthcare: A product review. Artificial Intelligence in Medicine, 160:103052.
Kofler, M. J., Irwin, L. N., Soto, E. F., Groves, N. B., Harmon, S. L., and Sarver, D. E. (2018). Executive functioning heterogeneity in pediatric adhd. Journal of Abnormal Child Psychology, 47(2):273–286.
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., and Lemey, C. (2021). Machine learning and natural language processing in mental health: Systematic review. Journal of Medical Internet Research, 23(5):e15708.
Lee, E. E., Torous, J., De Choudhury, M., Depp, C. A., Graham, S. A., Kim, H.-C., Paulus, M. P., Krystal, J. H., and Jeste, D. V. (2021). Artificial intelligence for mental health care: Clinical applications, barriers, facilitators, and artificial wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(9):856–864.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rocktäschel, T., Riedel, S., and Kiela, D. (2021). Retrieval-augmented generation for knowledge-intensive nlp tasks.
Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice, 45(5):332–339.
MacIntyre, M. R., Cockerill, R. G., Mirza, O. F., and Appel, J. M. (2023). Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments. Psychiatry Research, 328:115466.
Nayinzira, J. P. and Adda, M. (2024). Sentimentcarebot: Retrieval-augmented generation chatbot for mental health support with sentiment analysis. Procedia Computer Science, 251:334–341.
Sanjeewa, R., Iyer, R., Apputhurai, P., Wickramasinghe, N., and Meyer, D. (2024a). Empathic conversational agent platform designs and their evaluation in the context of mental health: Systematic review. JMIR Mental Health, 11:e58974.
Sanjeewa, R., Iyer, R., Apputhurai, P., Wickramasinghe, N., and Meyer, D. (2024b). Empathic conversational agent platform designs and their evaluation in the context of mental health: Systematic review. JMIR Ment Health, 11:e58974.
Sonuga-Barke, E. J., Sergeant, J. A., Nigg, J., and Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child and adolescent psychiatric clinics of North America, 17(2):367–384.
Tutun, S., Johnson, M. E., Ahmed, A., Albizri, A., Irgil, S., Yesilkaya, I., Ucar, E. N., Sengun, T., and Harfouche, A. (2022). An ai-based decision support system for predicting mental health disorders. Information Systems Frontiers, 25(3):1261–1276.
Vaidyam, A. N., Linggonegoro, D., and Torous, J. (2020). Changes to the psychiatric chatbot landscape: A systematic review of conversational agents in serious mental illness: Changements du paysage psychiatrique des chatbots: une revue systématique des agents conversationnels dans la maladie mentale sérieuse. The Canadian Journal of Psychiatry, 66(4):339–348.
Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., and Torous, J. B. (2019). Chatbots and conversational agents in mental health: A review of the psychiatric landscape. The Canadian Journal of Psychiatry, 64(7):456–464. PMID: 30897957.
Walter, Y. (2024). Digital psychology: Introducing a conceptual impact model and the future of work. Trends in Psychology.
Weizenbaum, J. (1966). Eliza—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36–45.
Zhou, S., Zhao, J., and Zhang, L. (2022). Application of artificial intelligence on psychological interventions and diagnosis: An overview. Frontiers in Psychiatry, 13.
Publicado
20/07/2025
Como Citar
PEIXOTO, Julio R. S.; LYRA, João V. M.; PASSOS, Ana C. A.; PEREIRA, Brena M. S.; GOUVEIA, Andrea C. H. B.; ARAUJO, Victor F. A..
Bridging AI and Psychology: A RAG-Driven Approach to Inhibitory Control and ADHD Interventions. In: WORKSHOP SOBRE AS IMPLICAÇÕES DA COMPUTAÇÃO NA SOCIEDADE (WICS), 6. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 256-266.
ISSN 2763-8707.
DOI: https://doi.org/10.5753/wics.2025.8426.
