Time-interleaved quantum random number generation within a coherent classical communication channel

  • Maurício J. Ferreira Universidade de Aveiro / Instituto de Telecomunicações
  • Daniel Pereira Instituto de Telecomunicações / Universidade de Aveiro
  • Nelson J. Muga Instituto de Telecomunicações
  • Nuno A. Silva Instituto de Telecomunicações
  • Armando N. Pinto Instituto de Telecomunicações / Universidade de Aveiro

Resumo


We propose and analyse a suitable setup for a time-interleaved vacuum-based quantum random number generator (QRNG) within a classical communication channel, which removes the need for a dedicated generation device. The experimental setup was characterized to assess the conditions where quantum fluctuations are dominant, and support for generation rates up to 1.3 Gbps is observed. Finally, the random bit stream is subjected to the NIST randomness test suite, consistently passing all evaluations.

Referências

Bouda, J., Pivoluska, M., Plesch, M., and Wilmott, C. (2012). Weak randomness seriously limits the security of quantum key distribution. Phys. Rev. A, 86:062308.

Ferreira, M. J., Silva, N. A., Pinto, A. N., and Muga, N. J. (2021). Homodyne noise characterization in quantum random number generators. In 2021 Telecoms Conference (ConfTELE), pages 1–6.

Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., Marquardt, C., and Leuchs, G. (2010). A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 4(10):711–715.

Gehring, T., Lupo, C., Kordts, A., Solar Nikolic, D., Jain, N., Rydberg, T., Pedersen, T., Pirandola, S., and Andersen, U. (2021). Homodyne-based quantum random number generator at 2.9 gbps secure against quantum side-information. Nature Communications, 12.

Gennaro, R. (2006). Randomness in cryptography. IEEE Security Privacy, 4(2):64–67.

Haw, J. Y., Assad, S. M., Lance, A. M., Ng, N. H. Y., Sharma, V., Lam, P. K., and Symul, T. (2015). Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Applied, 3:054004.

Herrero-Collantes, M. and Garcia-Escartin, J. C. (2017). Quantum random number generators. Reviews of Modern Physics, 89(1).

Huang, M., Chen, Z., Zhang, Y., and Guo, H. (2020a). A gaussian-distributed quantum random number generator using vacuum shot noise. Entropy, 22(6).

Huang, W., Zhang, Y., Zheng, Z., Li, Y., Xu, B., and Yu, S. (2020b). Practical security analysis of a continuous-variable quantum random-number generator with a noisy local oscillator. Phys. Rev. A, 102:012422.

Kelsey, J., Schneier, B., Wagner, D., and Hall, C. (1998). Cryptanalytic attacks on pseudorandom number generators. In Vaudenay, S., editor, Fast Software Encryption, pages 168–188, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kleis, S., Rueckmann, M., and Schaeffer, C. G. (2017). Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals. Opt. Lett., 42(8):1588–1591.

Milovancev, D., Vokíc, N., Pacher, C., Khan, I., Marquardt, C., Boxleitner, W., Hübel, H., and Schrenk, B. (2020). Towards integrating true random number generation in coherent optical transceivers. IEEE Journal of Selected Topics in Quantum Electronics, 26(5):1–8.

Silva, N. A., Pereira, D., Muga, N. J., and Pinto, A. N. (2020). Practical imperfections In 2020 22nd affecting the performance of CV-QKD based on coherent detection. International Conference on Transparent Optical Networks (ICTON), pages 1–4.

Zheng, Z., Zhang, Y., Huang, W., Yu, S., and Guo, H. (2019). 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Review of Scientific Instruments, 90(4):043105.
Publicado
16/08/2021
Como Citar

Selecione um Formato
FERREIRA, Maurício J.; PEREIRA, Daniel; MUGA, Nelson J.; SILVA, Nuno A.; PINTO, Armando N.. Time-interleaved quantum random number generation within a coherent classical communication channel. In: WORKSHOP DE COMUNICAÇÃO E COMPUTAÇÃO QUÂNTICA (WQUANTUM), 1. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 37-42. DOI: https://doi.org/10.5753/wquantum.2021.17225.