A New Perspective on Key Expansion for QKD BB84: The RanA Model
Abstract
Quantum cryptography, exemplified by the BB84 protocol, ensures secure key distribution through quantum mechanical principles such as superposition and the no-cloning theorem. However, limitations in key generation rates and scalability, along with attenuation and noise in quantum channels, hinder its practical deployment in high-demand scenarios. This study proposes a hybrid approach that combines BB84 with classical key expansion, reducing dependence on quantum channels while maintaining efficiency and robustness against quantum attacks. The experimental results validate the scalability and security of the protocol.
Keywords:
QKD, Quantum Computing, Cryptography, BB84, Quantum Information
References
Bennett, C. H. and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84.
Biryukov, A., Dinu, D., and Khovratovich, D. (2016). Argon2: new generation of memory-hard functions for password hashing and other applications. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages 292–302. IEEE.
Brassard, G., Lütkenhaus, N., Mor, T., and Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical review letters, 85(6):1330.
Jiang, Y., Liu, B., Guo, C., and Zhao, J. (2021). A quantum pseudo-random number generation scheme. Journal of Physics: Conference Series, 2004(1):012001.
Kamel, O. H. A., Raslan, A. T. N. E.-D., Aly, T., and Gheith, M. (2024). Quantum computing’s impact on data encryption: Methodologies, implementation, and future directions: Exploring the bb84 protocol and comparative analysis with classical cryptographic techniques. In 2024 Intelligent Methods, Systems, and Applications (IMSA), pages 213–217. IEEE.
Kaur, H. and Singh, J. S. P. (2024). Software defined network implementation of multi-node adaptive novel quantum key distribution protocol. AIMS Electronics & Electrical Engineering, 8(4).
Lee, C., Sohn, I., and Lee, W. (2022). Eavesdropping detection in bb84 quantum key distribution protocols. IEEE Transactions on Network and Service Management, 19(3):2689–2701.
Liao, C.-T., Bahrani, S., da Silva, F. F., and Kashefi, E. (2022). Benchmarking of quantum protocols. Scientific Reports, 12(1):5298.
Maia, A. H. O., Freire, M., Melo, T., Rodrigues-Filho, R., Almeida, E. S., Prazeres, C. V. S., Figueiredo, G. B., and Peixoto, M. L. M. (2025). Q-edge: Leveraging quantum computing for enhanced software engineering in vehicular networks. In 40th ACM/SIGAPP Symposium On Applied Computing (ACM-SAC).
Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition.
Peixoto, M. L. M. (2024). Quantum edge computing for data analysis in connected autonomous vehicles. In 2024 IEEE Symposium on Computers and Communications (ISCC), pages 1–6.
Rahmanpour, M., Erfanian, A., Afifi, A., Khaje, M., and Fahimifar, M. H. (2024). A new quantum key distribution protocol to reduce afterpulse and dark counts effects. Results in Optics, page 100718.
Wolf, R. (2021). Quantum Key Distribution: An Introduction with Exercises, volume 988 of Lecture Notes in Physics. Springer, 1 edition.
Wootters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886):802–803.
Biryukov, A., Dinu, D., and Khovratovich, D. (2016). Argon2: new generation of memory-hard functions for password hashing and other applications. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages 292–302. IEEE.
Brassard, G., Lütkenhaus, N., Mor, T., and Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical review letters, 85(6):1330.
Jiang, Y., Liu, B., Guo, C., and Zhao, J. (2021). A quantum pseudo-random number generation scheme. Journal of Physics: Conference Series, 2004(1):012001.
Kamel, O. H. A., Raslan, A. T. N. E.-D., Aly, T., and Gheith, M. (2024). Quantum computing’s impact on data encryption: Methodologies, implementation, and future directions: Exploring the bb84 protocol and comparative analysis with classical cryptographic techniques. In 2024 Intelligent Methods, Systems, and Applications (IMSA), pages 213–217. IEEE.
Kaur, H. and Singh, J. S. P. (2024). Software defined network implementation of multi-node adaptive novel quantum key distribution protocol. AIMS Electronics & Electrical Engineering, 8(4).
Lee, C., Sohn, I., and Lee, W. (2022). Eavesdropping detection in bb84 quantum key distribution protocols. IEEE Transactions on Network and Service Management, 19(3):2689–2701.
Liao, C.-T., Bahrani, S., da Silva, F. F., and Kashefi, E. (2022). Benchmarking of quantum protocols. Scientific Reports, 12(1):5298.
Maia, A. H. O., Freire, M., Melo, T., Rodrigues-Filho, R., Almeida, E. S., Prazeres, C. V. S., Figueiredo, G. B., and Peixoto, M. L. M. (2025). Q-edge: Leveraging quantum computing for enhanced software engineering in vehicular networks. In 40th ACM/SIGAPP Symposium On Applied Computing (ACM-SAC).
Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition.
Peixoto, M. L. M. (2024). Quantum edge computing for data analysis in connected autonomous vehicles. In 2024 IEEE Symposium on Computers and Communications (ISCC), pages 1–6.
Rahmanpour, M., Erfanian, A., Afifi, A., Khaje, M., and Fahimifar, M. H. (2024). A new quantum key distribution protocol to reduce afterpulse and dark counts effects. Results in Optics, page 100718.
Wolf, R. (2021). Quantum Key Distribution: An Introduction with Exercises, volume 988 of Lecture Notes in Physics. Springer, 1 edition.
Wootters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886):802–803.
Published
2025-05-19
How to Cite
MELLO, Thiago Luigi; SANT’ANNA, Isys; FREIRE, Marcus; MAIA, Adriano; MOREIRA, Rodrigo; RIVELINO, Roberto; PEIXOTO, Maycon.
A New Perspective on Key Expansion for QKD BB84: The RanA Model. In: QUANTUM NETWORKS WORKSHOP (WQUNETS), 2. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 37-42.
DOI: https://doi.org/10.5753/wqunets.2025.9525.