IT Incident Solving Domain Experiment on Business Process Failure Prediction


  • Pedro O. T. Mello Federal University of the State of Rio de Janeiro
  • Kate Revoredo Vienna University of Economics and Business
  • Flávia Maria Santoro University of the State of Rio de Janeiro



Process mining, Data mining, Failure prediction, Case study


Business process monitoring aims at maintaining the reliability of process executions. Nevertheless, the dynamic nature of business processes hinders a proactive scenario in which risk mitigation actions can occur before the facts that put the process at risk. We argue that understanding failures behavior allows proactive actions. Analysing historical data of processes executions supports the identification of situations and patterns of failure behavior. In this paper, we present an experiment in which a combination of well-established techniques from Data Mining and Process Mining fields are applied to an incident management process. The results obtained show that it is possible to identify failures in order to reach for a proactive risk mitigation scenario.


Download data is not yet available.


Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., and Schulte, S. Event-based failure prediction in distributed business processes. Information Systems vol. 81, pp. 220–235, 2019.

Breuker, D., Matzner, M., Delfmann, P., and Becker, J. Comprehensible predictive models for business processes. MIS Quarterly 40 (4): 1009–1034, 2016.

del Río-Ortega, A., Gutiérrez, A. M., Durán, A., Resinas, M., and Ruiz-Cortés, A. Modelling service level agreements for business process outsourcing services. In Advanced Information Systems Engineering, J. Zdravkovic, M. Kirikova, and P. Johannesson (Eds.). Springer International Publishing, Cham, pp. 485–500, 2015.

Dubois, E. and Pohl, K., editors. Enriching Decision Making with Data-Based Thresholds of Process-Related KPIs. Springer International Publishing, Cham, 2017.

Dumas, M., Rosa, M. L., Mendling, J., and Reijers, H. A. Fundamentals of Business Process Management. Springer Publishing Company, Incorporated, 2018.

Fawcett, T. An introduction to roc analysis. Pattern recognition letters 27 (8): 861–874, 2006.

Günther, C. and van der Aalst, W. Fuzzy mining–adaptive process simplification based on multi-perspective metrics. Business Process Management, 2007.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning. Bayesian Forecasting and Dynamic Models vol. 1, pp. 1–694, 2009.

Hompes, B. F. A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J. C. A. M., and van der Aalst, W. M. P. Discovering Causal Factors Explaining Business Process Performance Variation. In CAiSE. Vol. 7328. pp. 177–192, 2017.

Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., and Horkoff, J., editors. Predictive Monitoring of Business Processes. Springer International Publishing, Cham, 2014.

Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, 1995.

La Rosa, M., van der Aalst, W. M. P., Dumas, M., and Milani, F. P. Business process variability modeling: A survey. 50 (1): 1–45, 2013.

Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., and Maggi, F. M. Complex symbolic sequence encodings for predictive monitoring of business processes. In International Conference on Business Process Management. Springer, pp. 297–313, 2015.

Marquez-Chamorro, A. E., Resinas, M., and Ruiz-Cortes, A. Predictive monitoring of business processes: a survey, 2017.

Márquez-Chamorro, A. E., Resinas, M., Ruiz-Cortés, A., and Toro, M. Run-time prediction of business process indicators using evolutionary decision rules. Expert Systems with Applications vol. 87, pp. 1–14, 2017.

Mehdiyev, N., Evermann, J., and Fettke, P. A novel business process prediction model using a deep learning method. Business & information systems engineering 62 (2): 143–157, 2020.

Recker, J. Scientific Research in Information Systems: A Beginner’s Guide. Springer Publishing Company, Incorporated, 2012.

Schapire, R. E. and Freund, Y. Boosting: Foundations and algorithms. MIT press, 2012.

Syamsiyah, A., Bolt, A., Cheng, L., Hompes, B. F. A., Jagadeesh Chandra Bose, R. P., van Dongen, B. F., and van der Aalst, W. M. P. Business process comparison: A methodology and case study. In Lecture Notes in Business Information Processing, W. Abramowicz (Ed.). Vol. 288. pp. 253–267, 2017.

van der Aalst, W. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag Berlin Heidelberg, 2011.

van der Aalst, W. et al. Process mining manifesto. In Lecture Notes in Business Information Processing. Vol. 99 LNBIP. pp. 169–194, 2012.

van der Aalst, W. M. Process Mining: Data Science in Action. Springer-Verlag Berlin Heidelberg, 2016.

Verenich, I., Dumas, M., Rosa, M. L., Maggi, F. M., and Teinemaa, I. Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Transactions on Intelligent Systems and Technology (TIST) 10 (4): 1–34, 2019.

Weske, M., Marco Montali, Ingo Weber, and Jan vom Brocke. Business Process Management. In Business Process Management, M. Weske, M. Montali, I. Weber, and J. vom Brocke (Eds.). Lecture Notes in Computer Science, vol. 11080. Springer International Publishing, 2018.

Wieczorek, W. Grammatical inference: Algorithms, routines and applications. sci, vol. 673, 2017.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016.




How to Cite

O. T. Mello, P., Revoredo, K., & Maria Santoro, F. (2021). IT Incident Solving Domain Experiment on Business Process Failure Prediction. Journal of Information and Data Management, 11(1).