Analysis of Electrical Signals by Machine Learning for Classification of Individualized Electronics on the Internet of Smart Grid Things (IoSGT) architecture




Smart Grid, Machine Learning, Power Data Analysis, Electric Equipment Identification


This paper presents a study on the performance of Machine Learning techniques for the task of determining each of the electronics systems connected within the same electrical network, in the Internet of Smart Grid Things (IoSGT) architecture. This is regarded as an ecosystem which has cutting-edge technologies that work together to enable advanced SG applications, and run in core/edge cloud datacenters connected to an underlying IoT network infrastructure. This identification was carried out by analyzing traditional energy measures (i.e., voltage, current and power) through ML-based techniques. The analysis of regular energy measurements is required as a means of ensuring compatibility with legacy /smart meters, without the need to exchange them for new ones or make updates. The data was obtained by using a smart meter built by our group, and was processed and validated in the IoSGT edge-cloud.


Download data is not yet available.


Alonso, A. M., Martín, E., Mateo, A., Nogales, F. J., Ruiz, C., and Veiga, A. (2022). Clustering electricity consumers: Challenges and applications for operating smart grids. IEEE Power and Energy Magazine, 20(3):54-63. DOI: 10.1109/MPE.2022.3150826.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175-185. DOI: 10.1080/00031305.1992.10475879.

Assembly, G. (2015). Transforming our world: the 2030 agenda for sustainable development. Technical report, United Nations General Assembly. Available online [link].

Barja-Martinez, S., Aragüés-Peñalba, M., Munné-Collado, Í., Lloret-Gallego, P., Bullich-Massagué, E., and Villafafila-Robles, R. (2021). Artificial intelligence techniques for enabling big data services in distribution networks: A review. Renewable and Sustainable Energy Reviews, 150:111459.

Cabrini, F. H., de Castro Barros Filho, A., Maciel, D. B., Valiante Filho, F., Neto, A. J. V., and Kofuji, S. T. (2022a). Helix multi-layered: a context broker federation for an efficient cloud-to-things continuum. Annals of Telecommunications. DOI: 10.1007/s12243-022-00920-z.

Cabrini, F. H., de Castro Barros Filho, A., Maciel, D. B., Valiante Filho, F., Neto, A. J. V., and Kofuji, S. T. (2022b). Helix multi-layered: a context broker federation for an efficient cloud-to-things continuum. Annals of Telecommunications, 77(11):867-879. DOI: 10.1007/s12243-022-00920-z.

Cabrini, F. H., Valiante Filho, F., Rito, P., Barros Filho, A., Sargento, S., Venâncio Neto, A., and Kofuji, S. T. (2021). Enabling the industrial internet of things to cloud continuum in a real city environment. Sensors, 21(22). DOI: 10.3390/s21227707.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273-297. DOI: 10.1007/BF00994018.

Gopstein, A., Nguyen, C., O'Fallon, C., Hastings, N., and Wollman, D. (2021). Nist framework and roadmap for smart grid interoperability standards, release 4.0, special publication (nist sp). Technical report, National Institute of Standards and Technology (NIST). [online]: Accessed on April 1, 2022.

Hajam, S. S. and Sofi, S. A. (2021). Iot-fog architectures in smart city applications: A survey. China Communications, 18(11):117-140. DOI: 10.23919/JCC.2021.11.009.

Hand, D. J. and Yu, K. (2001). Idiot's bayes: Not so stupid after all? International Statistical Review / Revue Internationale de Statistique, 69(3):385-398. DOI: 10.1111/j.1751-5823.2001.tb00465.x.

Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870-1891. DOI: 10.1109/5.192069.

Hashmi, S. A., Ali, C. F., and Zafar, S. (2021). Internet of things and cloud computing-based energy management system for demand side management in smart grid. International Journal of Energy Research, 45(1):1007-1022. DOI: 10.1002/er.6141.

Haykin, S. (2001). Redes neurais artificiais: Princípios e práticas. 2ª edição. Book.

Hayvaci, H. T., Ilbegi, H., and Yetik, I. S. (2019). Classification of electronic devices with power-swept signals using harmonic radar. IEEE transactions on aerospace and electronic systems, 56(3):2292-2301. DOI: 10.1109/TAES.2019.2949326.

Hayvaci, H. T., Shahi, M., Ilbegi, H., and Yetik, I. S. (2021). A linear model for classification of electronic devices using harmonic radar. IEEE Transactions on Aerospace and Electronic Systems, 57(6):3614-3622. DOI: 10.1109/TAES.2021.3079572.

Huang, S.-J., Hsieh, C.-T., Kuo, L.-C., Lin, C.-W., Chang, C.-W., and Fang, S.-A. (2011). Classification of home appliance electricity consumption using power signature and harmonic features. In 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, pages 596-599. IEEE. DOI: 10.1109/PEDS.2011.6147311.

Huawey (2020). Digital engine empowers smart grids - huawei enterprise. Available online [link] Accessed on January 12, 2023.

Kaur, I. (2021). Chapter 29 - metering architecture of smart grid. In Azar, A. T. and Kamal, N. A., editors, Design, Analysis, and Applications of Renewable Energy Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pages 687-704. Academic Press. DOI: 10.1016/B978-0-12-824555-2.00030-7.

Keith Stouffer, Victoria Pillitteri, S. L. M. A. and Hahn, A. (2015). Nist special publication 800-82 revision 2: Guide to industrial control systems (ics) security. Technical report, National Institute of Standards and Technology (NIST).

McCallum, A. and Nigam, K. (1998). Naive bayes: The unreasonable effectiveness of probability estimation. In AAAI-98 Workshop on Learning for Text Categorization. Available online [link].

Meyer-Baese, A. and Schmid, V. (2014). Chapter 7 - foundations of neural networks. In Meyer-Baese, A. and Schmid, V., editors, Pattern Recognition and Signal Analysis in Medical Imaging (Second Edition), pages 197-243. Academic Press, Oxford, second edition edition. DOI: 10.1016/B978-0-12-409545-8.00007-8.

Modesto, W., Bastos, L., Venâncio Neto, A., Rosário, D., and Cerqueira, E. (2022). Towards automating the integration of legacy ieds into edge-supported internet of smart grid things. Journal of Internet Services and Applications, 12(1):33–46. DOI: 10.5753/jisa.2022.2374.

Omitaomu, O. A. and Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2):548-568. DOI: 10.3390/smartcities4020029.

Portilla, J., Mujica, G., Lee, J.-S., and Riesgo, T. (2019). The extreme edge at the bottom of the internet of things: A review. IEEE Sensors Journal, PP:1-1. DOI: 10.1109/JSEN.2019.2891911.

Quek, Y., Woo, W. L., and Logenthiran, T. (2016). Dc equipment identification using k-means clustering and knn classification techniques. In 2016 IEEE Region 10 Conference (TENCON), pages 777-780. IEEE. DOI: 10.1109/TENCON.2016.7848109.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81-106. DOI: 10.1007/BF00116251.

Ramalho, F. and Neto, A. (2016). Virtualization at the network edge: A performance comparison. In 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1-6. DOI: 10.1109/WoWMoM.2016.7523584.

Saleem, Y., Crespi, N., Rehmani, M. H., and Copeland, R. (2019). Internet of things-aided smart grid: technologies, architectures, applications, prototypes, and future research directions. IEEE Access, 7:62962-63003. DOI: 10.1109/ACCESS.2019.2913984.

Santos, H., Eugênio, P., Marques, L., Oliveira, H., Rosário, D., Nogueira, E., Neto, A., and Cerqueira, E. (2022). Internet of smart grid things (iosgt): Prototyping a real cloud-edge testbed. In Proceedings of the 14th Brazilian Symposium on Ubiquitous and Pervasive Computing (SBCUP), pages 111-120, Porto Alegre, RS, Brazil. SBC. DOI: 10.5753/sbcup.2022.223205.

Shen, H. (2014). Interactive notebooks: Sharing the code. Nature, 515(7525):151-152. DOI: 10.1038/515151ax.

Singh, R. and Gill, S. S. (2023). Edge ai: A survey. Internet of Things and Cyber-Physical Systems, 3:71-92. DOI: 10.1016/j.iotcps.2023.02.004.

Sivakumar, A. and Gunasundari, R. (2017). A survey on data preprocessing techniques for bioinformatics and web usage mining. In International Journal of Pure and Applied Mathematics, pages 785-794. Available online [link].

Wang, Y., Chen, Q., Hong, T., and Kang, C. (2019). Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Transactions on Smart Grid, 10(3):3125-3148. DOI: 10.1109/TSG.2018.2818167.

WEKA (2022). Weka 3: Machine learning software in java. Available online [link].




How to Cite

Marques, L., Eugênio, P., Bastos, L., Santos, H., Rosário, D., Nogueira, E., Cerqueira, E., Kreutz, M., & Neto, A. (2023). Analysis of Electrical Signals by Machine Learning for Classification of Individualized Electronics on the Internet of Smart Grid Things (IoSGT) architecture. Journal of Internet Services and Applications, 14(1), 124–135.



Research article