Minicursos do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos
Sinopse
O Livro de Minicursos do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2022) contém os minicursos selecionados para apresentação no XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), realizado online entre os dias 23 e 27 de maio de 2022. O Livro de Minicursos do SBRC tem sido, tradicionalmente, utilizado como material de estudo de alta qualidade por alunos de graduação e pós-graduação, bem como por profissionais da área. As sessões de apresentação dos minicursos são, também, uma importante oportunidade para atualização de conhecimentos da comunidade científica e para a complementação da formação dos participantes. O principal objetivo dos minicursos do SBRC é oferecer treinamento e atualização de curto prazo em temas normalmente não cobertos nas estruturas curriculares e que possuem grande interesse entre acadêmicos e profissionais.
Capítulos:
Downloads
Referências
A HajaAlaudeen, E Kirubakaran e D Jeya Mala. “Approaches for Utility-Based QOE/QOS Architecture for Streaming Server in a Heterogeneous Wireless Device Based on SVM”. en. Em: (2015), p. 6.
Aaron Chen, Jeffrey Law e Michal Aibin. “A Survey on Traffic Prediction Techniques Using Artificial Intelligence for Communication Networks”. en. Em: Telecom 2.4 (dez. de 2021), pp. 518–535. ISSN: 2673-4001. DOI: 10.3390/telecom2040029. URL: https://www.mdpi.com/2673-4001/2/4/29 (acesso em 03/05/2022).
Abdelkader Benmir et al. “Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks”. en. Em: Journal of Computing and Information Technology 26.4 (mar. de 2019), pp. 267–287. ISSN: 13301136, 18463908. DOI: 10.20532/cit.2018.1004278. URL: [link] (acesso em 05/05/2022).
Abdurrahman Pektas e Tankut Acarman. “Deep learning to detect botnet via network flow summaries”. en. Em: Neural Computing and Applications 31.11 (nov. de 2019), pp. 8021–8033. ISSN: 0941-0643, 1433-3058. DOI: 10.1007/s00521-018-3595-x. URL: [link] (acesso em 01/05/2022).
Alvarenga, I. D., Camilo, G. F., De Souza, L. A. e Duarte, O. C. M. (2021). Dagsec: A hybrid distributed ledger architecture for the secure management of the internet of things. Em 2021 IEEE International Conference on Blockchain (Blockchain), páginas 266–271. IEEE.
Amin Shahraki et al. “Active Learning for Network Traffic Classification: A Technical Study”. Em: IEEE Transactions on Cognitive Communications and Networking 8.1 (mar. de 2022), pp. 422–439. ISSN: 2332-7731, 2372-2045. DOI: 10. 1109/TCCN.2021.3119062. URL: [link] (acesso em 22/04/2022).
Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M. e Tucci-Piergiovanni, S. (2019). Dissecting tendermint. Em International Conference on Networked Systems, páginas 166–182. Springer.
AMP: Atomic Multi-Path Payments over Lightning. Disponível em [link]. Acessado em 9 de maio de 2022.
Ampel, B., Patton, M. e Chen, H. (2019). Performance modeling of hyperledger sawtooth blockchain. Em 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), páginas 59–61. IEEE.
Ananda Streit et al. “Efeito do confinamento causado pela pandemia Covid-19 nos perfis de tráfego residencial”. Em: Anais do XXXIX SBRC. Disponível em https://sol.sbc.org.br/index.php/sbrc/article/view/16724 Acessado em 07 de maio de 2022. Uberlândia: SBC, 2021, pp. 238–251. DOI: 10.5753/sbrc.2021.16724.
Androulaki, E. et al. (2018). Hyperledger Fabric: a distributed operating system for permissioned blockchains. Em 13th EuroSys Conference, página 30.
Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al. (2018). Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference, pages 1–15.
Antonio Rocha et al. “Revisitando Metrologia de Redes: Do Passado às Novas Tendências”. Em: Minicursos do SBRC. 2016.
Antonio, A. d. A., de Albuquerque, C. V., Loivos, E. B., Gondim, B. T., Vianna, A. A. e Ferreira, A. O. (2021). Segurança e escalabilidade em sharding blockchain. Sociedade Brasileira de Computação.
Artur Ziviani e Otto Carlos M. B. Duarte. “Metrologia na Internet”. Em: Minicursos do SBRC. Fortaleza, CE, 2005.
Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. Advances in neural information processing systems, 29.
Ayse Rumeysa Mohammed et al. “Machine Learning-Based Network Status Detection and Fault Localization”. en. Em: IEEE Transactions on Instrumentation and Measurement 70 (2021), pp. 1–10. ISSN: 0018-9456, 1557-9662. DOI: 10.1109/TIM.2021.3094223. URL: [link] (acesso em 22/04/2022).
Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A., Timón, J. e Wuille, P. (2014). Enabling Block-chain Innovations with Pegged Sidechains. URL: [link], 72.
Baird, L. e Luykx, A. (2020). The hashgraph protocol: Efficient asynchronous BFT for high-throughput distributed ledgers. Em 2020 International Conference on Omni-layer Intelligent Systems (COINS), páginas 1–7.
Bao, H. and Roubaud, D. (2022). Recent development in fintech: Non-fungible token. FinTech, 1(1):44–46.
Bartoletti, M., Carta, S., Cimoli, T., and Saia, R. (2020). Dissecting ponzi schemes on ethereum: identification, analysis, and impact. Future Generation Computer Systems, 102:259–277.
Benjamin J. Radford et al. “Network Traffic Anomaly Detection Using Recurrent Neural Networks”. Em: arXiv:1803.10769 [cs] (28 de mar. de 2018). Disponível em http://arxiv.org/abs/1803.10769 Acessado em 07 de maio de 2022. arXiv: 1803.10769.
Bianchi, F. M., Grattarola, D., & Alippi, C. (2020). Spectral clustering with graph neural networks for graph pooling. In International conference on machine learning (pp. 874–883).
Bianchi, F. M., Grattarola, D., Livi, L., & Alippi, C. (2021). Graph neural networks with convolutional arma filters. IEEE transactions on pattern analysis and machine intelligence.
Bitcoin Wiki (2021). Hash Time Locked Contracts. Disponível em https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts. Acessado em 9 de maio de 2022.
Bitcoinj.org (2022). bitcoinj. Disponível em https://bitcoinj.org/.
BitcoinWiki (2021). Script - Bitcoin Wiki. Disponível em https://en.bitcoin.it/wiki/Script.
BitcoinWiki (2022). Bitcoin Scalability. Acessado em 9 de maio de 2022.
Blockchain.com (2022a). Average Transactions Per Block. Acessado em 9 de maio de 2022.
Blockchain.com (2022b). Blockchain charts. Acessado em 9 de maio de 2022.
Blockchain.com (2022c). Blockchain Size. Acessado em 9 de maio de 2022.
Borkowski, M., Sigwart, M., Frauenthaler, P., Hukkinen, T., and Schulte, S. (2019). Dextt: Deterministic Cross-Blockchain Token Transfers. IEEE Access, 7:111030–111042.
Bosworth, A. (2021). Balance of Satoshis. Disponível em: https://github.com/alexbosworth/balanceofsatoshis. Acessado em 9 de maio de 2022.
Bowen, L., Hulbert, R., Fong, J., Rentz, Z., and Debruhl, B. (2019a). Democratized radio tomography: Using consumer equipment to see through walls. IEEE Vehicular Technology Conference, pages 1–6.
Bowen, L., Hulbert, R., Fong, J., Rentz, Z., and DeBruhl, B. (2019b). Democratized radio tomography: Using consumer equipment to see through walls. In IEEE Vehicular Technology Conference, pages 1–6. IEEE.
brainbot labs Est. (2020). The Raiden Network: Fast, cheap, scalable token transfers for Ethereum. Disponível em: https://raiden.network/. Acessado em 9 de maio de 2022.
Breidenbach, L. et al. (2021). Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle Networks. Acessado em 9 de maio de 2022.
Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
Buchman, E. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD thesis, University of Guelph.
Bugday, A., Ozsoy, A. e Sever, H. (2019). Securing Blockchain Shards by Using Learning Based Reputation and Verifiable Random Functions. Em 2019 International Symposium on Networks, Computers and Communications (ISNCC), páginas 1–4. IEEE.
Buterin, V. et al. (2014). Ethereum: A nextgeneration smart contract and decentralized application platform. URL: [link], 7.
Cachin, C. et al. (2016). Architecture of the hyperledger blockchain fabric. In Workshop on distributed cryptocurrencies and consensus ledgers. Chicago.
Çăglayan Aksoy, P. and Özkan Üner, Z. (2021). Nfts and copyright: challenges and opportunities. Journal Of Intellectual Property Law and Practice, 16(10):1115–1126.
Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C. e Duarte, O. C. M. (2020). A Secure Personal-Data Trading System Based on Blockchain, Trust, and Reputation. Em 2020 IEEE International Conference on Blockchain, páginas 379– 384.
Capanema, C. G. S., & Silva, F. A. (2021). Detecção de pontos de interesse e predição de próximo local de visita de usuários móveis com base em dados esparsos. In Anais estendidos do xxxix simpósio brasileiro de redes de computadores e sistemas distribuídos (pp. 129–136).
Capanema, C. G. S., Silva, F. A., & Silva, T. R. M. B. (2019). Identificacão e classificacão de pontos de interesse individuais com base em dados esparsos. In Anais do xxxvii simpósio brasileiro de redes de computadores e sistemas distribuídos (pp. 15–28).
Capanema, C. G. S., Silva, F. A., Silva, T. R. M. B., & Loureiro, A. A. F. (2021a). Dcluster: Geospatial analytics with poi identification. Journal of Information and Data Management, 12(2).
Capanema, C. G. S., Silva, F. A., Silva, T. R. M. B., & Loureiro, A. A. F. (2021b). Poirgnn: Using recurrent and graph neural networks to predict the category of the next point of interest. In Proceedings of the 18th acm symposium on performance evaluation of wireless ad hoc, sensor, & ubiquitous networks (pp. 49–56).
Carlos Rodrigues et al. “An ontology for managing network services quality”. en. Em: Expert Systems with Applications 39.9 (jul. de 2012), pp. 7938–7946. ISSN: 09574174. DOI: 10.1016/j.eswa.2012.01.106. URL: [link] (acesso em 05/05/2022).
Casale-Brunet, S., Ribeca, P., Doyle, P., and Mattavelli, M. (2021). Networks of ethereum non-fungible tokens: A graph-based analysis of the erc-721 ecosystem. In 2021 IEEE International Conference on Blockchain (Blockchain), pages 188–195. IEEE.
Castro, M. e Liskov, B. (1999). Practical byzantine fault tolerance. Em Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, páginas 173–186, Berkeley, CA, USA. USENIX Association.
Charles, P. (2013). Openzeppelin. https://github.com/OpenZeppelin.
Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. en. Cham: Springer International Publishing, 2018. DOI: 10.1007/978-3-319-94463-0. URL: http://link.springer.com/10.1007/978-3-319-94463-0 (acesso em 29/04/2022).
Chen, C., Han, Y., Chen, Y., and Liu, K. R. (2016). Multi-person breathing rate estimation using time-reversal on wifi platforms. In IEEE Global Conference on Signal and Information Processing, pages 1059–1063. IEEE.
Chen, C., Han, Y., Chen, Y., Lai, H.-Q., Zhang, F.,Wang, B., and Liu, K. R. (2017a). TR-BREATH: Time-reversal breathing rate estimation and detection. IEEE Transactions on Biomedical Engineering, 65(3):489–501.
Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In Proceedings of the aaai conference on artificial intelligence (Vol. 34, pp. 3438– 3445).
Chen, D., Liu, R., Hu, Q., & Ding, S. X. (2021). Interaction-aware graph neural networks for fault diagnosis of complex industrial processes. IEEE Transactions on Neural Networks and Learning Systems.
Chen, J. e Micali, S. (2019). Algorand: A Secure and Efficient Distributed Ledger. Theoretical Computer Science, 777:155–183.
Chen, J., Ma, T., & Xiao, C. (2018). Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247.
Chen, L., Chen, X., Ni, L., Peng, Y., and Fang, D. (2017b). Human behavior recognition using wi-fi csi: Challenges and opportunities. IEEE Communications Magazine, 55(10):112–117.
Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y. e Shi, W. (2017). On security analysis of proof-of-elapsed-time (poet). Em International Symposium on Stabilization, Safety, and Security of Distributed Systems, páginas 282–297. Springer.
Chen, S., Dong, J., Ha, P., Li, Y., & Labi, S. (2021). Graph neural network and reinforcement learning for multi-agent cooperative control of connected autonomous vehicles. Computer-Aided Civil and Infrastructure Engineering, 36(7), 838–857.
Cheng, D., Yang, F., Xiang, S., & Liu, J. (2022). Financial time series forecasting with multi-modality graph neural network. Pattern Recognition, 121, 108218.
Cheow, K. A. (2020). Something on Transaction Structure. Acessado em 9 de maio de 2022.
Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C.-J. (2019). Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (pp. 257–266).
Chohan, U. W. (2021). Non-fungible tokens: Blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers.
Churyumov, A. (2016). A decentralized system for storage and transfer of value. "https://obyte.org/Byteball.pdf".
CloudTweaks (2021). How Bitcoin Brought The Lightning Network To El Salvador. [link]. Acessado em 3 de fevereiro de 2022.
CoinMarketCap (2022). Cryptocurrency Prices, Charts and Market Capitalizations. Disponível em https://coinmarketcap.com/. Acessado em 9 de maio de 2022.
Conoscenti, M., Vetro, A. e De Martin, J. C. (2019). Hubs, rebalancing and service providers in the lightning network. Ieee Access, 7:132828– 132840.
Corbett, J. C. et al. (2013). Spanner: Google’s Globally Distributed Database. ACM Transactions on Computer Systems, 31(3).
Costan, V. e Devadas, S. (2016). Intel sgx explained. Cryptology ePrint Archive, Report 2016/086. https://ia.cr/2016/086.
Dai, R., Xu, S., Gu, Q., Ji, C., & Liu, K. (2020). Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data. In Proceedings of the 26th acm sigkdd international conference on knowledge discovery & data mining (pp. 3074–3082).
Damasceno, L. (2022). Qual máquina de cartão tem a melhor taxa de transação 2022? Disponível em https://br.mobiletransaction.org/maquina-de-cartao-melhor-taxa/. Acessado em 9 de maio de 2022.
Damodaran, N., Haruni, E., Kokhkharova, M., and Schäfer, J. (2020). Device free human activity and fall recognition using WiFi channel state information (CSI). Transactions on Pervasive Computing and Interaction, 2(1):1–17.
Dang, H., Dinh, T. T. A., Loghin, D., Chang, E.-C., Lin, Q. e Ooi, B. C. (2019). Towards Scaling Blockchain Systems via Sharding. Em Proceedings of the 2019 international conference on management of data, páginas 123–140.
Dario Bega et al. “AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network Slicing”. en. Em: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. Toronto, ON, Canada: IEEE, jul. de 2020, pp. 794–803. ISBN: 978-1-72816-412-0. DOI: 10.1109/INFOCOM41043.2020.9155299. URL: https://ieeexplore.ieee.org/document/9155299/ (acesso em 03/05/2022).
Davide Andreoletti et al. “Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks”. en. Em: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Paris, France: IEEE, abr. de 2019, pp. 246–251. ISBN: 978-1-72811-878-9. DOI: 10. 1109/INFCOMW.2019.8845132. URL: [link] (acesso em 03/05/2022).
de Minas e Energia, M. (2021). Anuário estatístico de energia elétrica 2021. Relatório técnico, Ministério de Minas e Energia do Brasil. Acessado em 9 de maio de 2022.
de Oliveira, M. T. et al. (2019). Towards a Blockchain-based Secure Electronic Medical Record for Healthcare Applications. Em IEEE International Conference on Communications (ICC), páginas 1–6.
de Souza, L. A. C. et al. (2020). DFedForest: Decentralized Federated Forest. Em 2020 IEEE International conference on blockchain (blockchain), páginas 90–97. IEEE.
Decker, C. (2021). Lightning network research; topology datasets. https://github.com/lnresearch/topology. Acessado em 29 de dezembro de 2021.
Decker, C. e Wattenhofer, R. (2014). Bitcoin Transaction Malleability and MtGox. Em European Symposium on Research in Computer Security, páginas 313–326. Springer.
Decker, C. e Wattenhofer, R. (2015). A fast and scalable payment network with bitcoin duplex micropayment channels. Em Pelc, A. e Schwarzmann, A. A., editors, Stabilization, Safety, and Security of Distributed Systems, páginas 3–18, Cham. Springer International Publishing.
Defferrard,M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.
Deng, L., Lian, D., Huang, Z., & Chen, E. (2022). Graph convolutional adversarial networks for spatiotemporal anomaly detection. IEEE Transactions on Neural Networks and Learning Systems.
Digiconomist (2022). Bitcoin Energy Consumption Index. Acessado em 9 de maio de 2022.
Dingledine, R., Mathewson, N. e Syverson, P. (2004). Tor: The Second-Generation onion router. Em 13th USENIX Security Symposium (USENIX Security 04), San Diego, CA. USENIX Association.
Do, K., Tran, T., & Venkatesh, S. (2019). Graph transformation policy network for chemical reaction prediction. In Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (pp. 750–760).
Dolgui, A., Ivanov, D., Potryasaev, S., Sokolov, B., Ivanova, M., and Werner, F. (2020). Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. International Journal of Production Research, 58(7):2184–2199.
Dou, C. and Huan, H. (2021). Full respiration rate monitoring exploiting doppler information with commodity wi-fi devices. Sensors, 21(10):3505.
Duan, S., Yu, T., and He, J. (2018a). WiDriver: Driver Activity Recognition System Based on WiFi CSI. International Journal ofWireless Information Networks, 25(2):146–156.
Duan, S., Yu, T., and He, J. (2018b). Widriver: Driver activity recognition system based on wifi csi. International Journal of Wireless Information Networks, 25(2):146–156.
Duarte, J., & Vlimant, J.-R. (2022). Graph neural networks for particle tracking and reconstruction. In Artificial intelligence for high energy physics (pp. 387–436). World Scientific.
Dziembowski, S., Faust, S. e Hostáková, K. (2018). General state channel networks. Em Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, página 949–966, New York, NY, USA. Association for Computing Machinery.
Edmonds, J. e Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM, 19(2):248–264.
El Faqir, Y., Arroyo, J., and Hassan, S. (2020). An overview of decentralized autonomous organizations on the blockchain. In Proceedings of the 16th international symposium on open collaboration, pages 1–8.
Ellis, S., Juels, A. e Nazarov, S. (2017). Chainlink: A Decentralized Oracle Network. Retrieved March, 11:38. Acessado em 9 de maio de 2022.
Entriken, W., Shirley, D., Evans, J., and Sachs, N. (2018). Eip-721: Non-fungible token standard,"ethereum improvement proposals, no. 721, january 2018. https://eips.ethereum.org/EIPS/eip-721.
Erol Gelenbe et al. “Self-Aware Networks That Optimize Security, QoS, and Energy”. en. Em: Proceedings of the IEEE 108.7 (jul. de 2020), pp. 1150–1167. ISSN: 0018-9219, 1558-2256. DOI: 10.1109/JPROC.2020.2992559. URL: https://ieeexplore.ieee.org/document/9103525/ (acesso em 06/05/2022).
Fairfield, J. (2021). Tokenized: The law of non-fungible tokens and unique digital property. Indiana Law Journal, Forthcoming.
Fang, B., Lane, N. D., Zhang, M., Boran, A., and Kawsar, F. (2016). Bodyscan: Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring. In Proceedings of the international conference on mobile systems, applications, and services, pages 97–110.
Fatima Laiche et al. “When Machine Learning Algorithms Meet User Engagement Parameters to Predict Video QoE”. en. Em: Wireless Personal Communications 116.3 (fev. de 2021). Disponível em https://link.springer.com/10.1007/s11277-020-07818-w Acessado em 07 de maio de 2022., pp. 2723– 2741. ISSN: 0929-6212, 1572-834X. DOI: 10.1007/s11277-020-07818-w.
Georgios Kougioumtzidis et al. “Machine Learning for QoE Management in Future Wireless Networks”. Em: 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science. 2021, pp. 1–4. DOI: 10.23919/ URSIGASS51995.2021.9560226.
Goldwasser, S., Micali, S. e Rackoff, C. (1985). The knowledge complexity of interactive proof-systems. Em Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, página 291–304, New York, NY, USA. Association for Computing Machinery.
Gopalan, A., Sankararaman, A.,Walid, A. e Vishwanath, S. (2020). Stability and Scalability of Blockchain Systems. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2):1–35.
Gordon, W. J. and Catalini, C. (2018). Blockchain technology for healthcare: Facilitating the transition to patient-driven interoperability. Computational and Structural Biotechnology Journal, 16:224 – 230.
Grattarola, D., & Alippi, C. (2021). Graph neural networks in tensorflow and keras with spektral. IEEE Computational Intelligence Magazine, 16(1), 99–106.
Gringoli, F. and Nava, L. (2009). Open firmware for wifi networks.
Gringoli, F., Schulz, M., Link, J., and Hollick, M. (2019). Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets. Mobile Computing and Networking (MOBICOM), pages 21–28.
Gu, Y., Liu, T., Li, J., Ren, F., Liu, Z., Wang, X., and Li, P. (2018). Emosense: Data-driven emotion sensing via off-the-shelf wifi devices. In IEEE International Conference on Communications (ICC), pages 1–6. IEEE.
Gu, Y., Zhan, J., Ji, Y., Li, J., Ren, F., and Gao, S. (2017). MoSense: An RF-Based Motion Detection System via Off-the-Shelf WiFi Devices. IEEE Internet of Things Journal, 4(6):2326–2341.
Gu, Y., Zhang, X., Yan, H., Liu, Z., and Ren, F. (2021). Wital: WiFibased Real-time Vital Signs Monitoring During Sleep.
Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P. e Gervais, A. (2020). SoK: Layer-two Blockchain Protocols. Em International Conference on Financial Cryptography and Data Security, páginas 201–226. Springer. 45
Halperin, D., Hu, W., Sheth, A., and Wetherall, D. (2011). Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Computer Communication Review, 41(1):53–53.
Hamilton,W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
Harris Drucker et al. “Support Vector Regression Machines”. Em: Advances in neural information processing systems 9 (2003), pp. 155–161.
Hartel, P. and Schumi, R. (2020). Mutation testing of smart contracts at scale. In International Conference on Tests and Proofs, pages 23–42. Springer.
Harz, D. and Knottenbelt, W. (2018). Towards safer smart contracts: A survey of languages and verification methods. arXiv preprint arXiv:1809.09805.
Hasanova, H., jun Baek, U., gon Shin, M., Cho, K., and Kim, M. S. (2019). A survey on blockchain cybersecurity vulnerabilities and possible countermeasures. International Journal of Network Management, 29(2):1–36.
Hearn, M. (2013). [ANNOUNCE] Micro-payment channels implementation now in bitcoinj. Bitcoin Forum. Disponível em [link].
Hesham Alhumyani et al. “An Efficient Internet Traffic Classification System Using Deep Learning for IoT”. Em: Computers, Materials&Continua 71.1 (2022), pp. 407– 422. ISSN: 1546-2226. DOI: 10.32604/cmc.2022.020727. URL: https://www.techscience.com/cmc/v71n1/45387 (acesso em 22/04/2022).
Hewa, T. M., Hu, Y., Liyanage, M., Kanhare, S. S., and Ylianttila, M. (2021b). Survey on blockchain-based smart contracts: Technical aspects and future research. IEEE Access, 9:87643–87662.
Hewa, T., Ylianttila, M., and Liyanage, M. (2021a). Survey on blockchain based smart contracts: Applications, opportunities and challenges. Journal of Network and Computer Applications, 177:102857.
Hong, Z., Guo, S., Li, P. e Chen, W. (2021). Pyramid: A Layered Sharding Blockchain System. Em IEEE INFOCOM 2021-IEEE Conference on Computer Communications, páginas 1–10. IEEE.
Hu, S., Gao, S., Wu, L., Xu, Y., Zhang, Z., Cui, H., & Gong, X. (2021). Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Computers, Environment and Urban Systems, 87, 101619.
Hu, Y., Qu, A., & Work, D. (2020). Graph convolutional networks for traffic anomaly. arXiv preprint arXiv:2012.13637.
Huakun Huang et al. “Machine Fault Detection for Intelligent Self-Driving Networks”. en. Em: IEEE Communications Magazine 58.1 (jan. de 2020), pp. 40–46. ISSN: 0163-6804, 1558-1896. DOI: 10.1109/MCOM.001.1900283. URL: https://ieeexplore.ieee.org/document/8970164/ (acesso em 24/04/2022).
Huang, H., Peng, X., Zhan, J., Zhang, S., Lin, Y., Zheng, Z. e Guo, S. (2022). BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding. Em IEEE INFOCOM.
HuiWang et al. “Mining Association Rules for Intrusion Detection”. en. Em: 2009 Fourth International Conference on Frontier of Computer Science and Technology. Disponível em http://ieeexplore.ieee.org/document/5392848/. Acessado em 12 de maio de 2022. Shanghai, TBD, China: IEEE, dez. de 2009, pp. 644–648. ISBN: 978-1-4244-5466-2 978-0-7695-3932-4. DOI: 10.1109 / FCST.2009.22.
IEEE 802:11 Working Group (2013). Ieee 802.11ac-2013 - ieee standard for information technology. Technical report, IEEE.
IEEE 802:11Working Group (2003). Ieee 802.11g-2003 - ieee standard for information technology. Technical report, IEEE.
IEEE 802:11Working Group (2009). Ieee 802.11n-2009 - ieee standard for information technology. Technical report, IEEE.
ION Lightning Network Wiki (2021). Watchtowers. Disponível em: https://wiki.ion.radar.tech/tech/research/watchtowers. Acessado em 9 de maio de 2022.
Iraj Lohrasbinasab et al. “Fromstatistical-to machine learning-based network traffic prediction”. en. Em: Transactions on Emerging Telecommunications Technologies (2021), p. 102258. DOI: 10.1002/ett.4394. (Acesso em 03/05/2022).
J. R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA, USA: Morgan Kaufmann Publishers Inc., 1993.
Javaid, H., Yang, J., Santoso, N., Upadhyay, M., Mohan, S., Hu, C. e Brebner, G. (2021). Blockchain machine: A network-attached hardware accelerator for hyperledger fabric. arXiv preprint arXiv:2104.06968.
Jentzsch, C. (2016). Decentralized autonomous organization to automate governance. White paper, November.
Jiang,W., & Luo, J. (2021). Graph neural network for traffic forecasting: A survey. arXiv preprint arXiv:2101.11174.
Jiangang Shu et al. “Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach”. en. Em: IEEE Transactions on Intelligent Transportation Systems 22.7 (jul. de 2021), pp. 4519–4530. ISSN: 1524-9050, 1558-0016. DOI: 10.1109/TITS.2020.3027390. URL: [link] (acesso em 01/05/2022).
Johnson, S., Robinson, P., and Brainard, J. (2019). Sidechains and interoperability.
K. Mor et al. “Evaluation of QoS Metrics in Ad-Hoc Wireless Sensor Networks using Zigbee”. en. Em: International Journal of Computer Sciences and Engineering 6.3 (mar. de 2018), pp. 90–94. ISSN: 23472693. DOI: 10.26438/ijcse/ v6i3.9094. URL: http://www.ijcseonline.org/full_paper_view.php?paper_id=1766 (acesso em 05/05/2022).
Kappos, G., Yousaf, H., Piotrowska, A., Kanjalkar, S., Delgado-Segura, S., Miller, A. e Meiklejohn, S. (2021). An empirical analysis of privacy in the lightning network. Em International Conference on Financial Cryptography and Data Security, páginas 167–186. Springer.
Ke, J., Qin, X., Yang, H., Zheng, Z., Zhu, Z., & Ye, J. (2021). Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multigraph convolutional network. Transportation Research Part C: Emerging Technologies, 122, 102858.
Kemmoe, V. Y., Stone, W., Kim, J., Kim, D., and Son, J. (2020). Recent advances in smart contracts: A technical overview and state of the art. IEEE Access, 8:117782–117801.
Kemp, Simon. Digital 2021:Global Overview Report. Disponível em https://datareportal.com/reports/digital-2021-global-overview-report Acessado em 07 de maio de 2022. 2021.
Khalil, R. e Gervais, A. (2017). Revive: Rebalancing Off-Blockchain Payment Networks. Em Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, página 439–453, New York, NY, USA. Association for Computing Machinery.
Khamis, A., Chou, C. T., Kusy, B., and Hu, W. (2018). Cardiofi: Enabling heart rate monitoring on unmodified COTSWiFi devices. ACM International Conference Proceeding Series, pages 97–106.
Khan, S. F. (2017). Health care monitoring system in internet of things (iot) by using rfid. In 2017 6th International Conference on Industrial Technology and Management (ICITM), pages 198–204. IEEE.
Khan, U. M., Kabir, Z., and Hassan, S. A. (2017). Wireless health monitoring using passive wifi sensing. In International Wireless Communications and Mobile Computing Conference, pages 1771–1776. IEEE.
Khojasteh, H. e Tabatabaei, H. (2021). A survey and taxonomy of blockchain-based payment channel networks. Em 2021 IEEE High Performance Extreme Computing Conference (HPEC), páginas 1–8. IEEE.
Kim, S., Kwon, Y. e Cho, S. (2018). A Survey of Scalability Solutions on Blockchain. Em 2018 International Conference on Information and Communication Technology Convergence (ICTC), páginas 1204–1207.
Kipf, T. N., & Welling, M. (2016a). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Kipf, T. N., & Welling, M. (2016b). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.
Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. In International conference on machine learning (pp. 2688–2697).
Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997.
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E. e Ford, B. (2018). Omniledger: A Secure, Scale-out, Decentralized Ledger via Sharding. Em 2018 IEEE Symposium on Security and Privacy (SP), páginas 583– 598. IEEE.
Kshetri, N. e Voas, J. (2018). Blockchain-Enabled E-Voting. IEEE Software, 35(4):95–99.
Kwon, J. e Buchman, E. (2019). Cosmos Whitepaper. A Netw. Distrib. Ledgers.
La Gatta, V.,Moscato, V., Postiglione,M., & Sperli, G. (2020). An epidemiological neural network exploiting dynamic graph structured data applied to the covid-19 outbreak. IEEE Transactions on Big Data, 7(1), 45–55.
Lamport, L., Shostak, R. e Pease, M. (1982). The Byzantine Generals Problem. ACM Transactions on Programming Languages and System.
Lan N. Nguyen e My T. Thai. “Network Resilience Assessment via QoS Degradation Metrics: An Algorithmic Approach”. en. Em: arXiv:1902.01701 [cs] (fev. de 2019). arXiv: 1902.01701. URL: http://arxiv.org/abs/1902.01701 (acesso em 05/05/2022).
Lange, K., Rohrer, E. e Tschorsch, F. (2021). On the impact of attachment strategies for payment channel networks. arXiv preprint arXiv:2102.09256.
Larimer, D. (2017). EOS.IO White Paper. Disponível em https://developers.eos.io/-welcome/latest/protocol/consensus_protocol. Acessado em 9 de maio de 2022.
Leandro Almeida, Fábio Verdi e Rafael Pasquini. “Estimando métricas de serviço através de In-band Network Telemetry”. Em: Anais do XXXIX SBRC. Disponível em https://sol.sbc.org.br/index.php/sbrc/article/view/16725 Acessado em 07 de maio de 2022. Uberlândia: SBC, 2021, pp. 252–265.
Lee, S., Park, Y. D., Suh, Y. J., and Jeon, S. (2018). Design and implementation of monitoring system for breathing and heart rate pattern usingWiFi signals. IEEE Annual Consumer Communications and Networking Conference, pages 1–7.
LetsExchange (2021). What Is Block Confirmation on Ethereum and How Many Confirmations Are Required? Disponível em [link]. Acessado em 9 de maio de 2022.
Li, F., Valero, M., Shahriar, H., Khan, R. A., and Ahamed, S. I. (2021). Wi-covid: A covid-19 symptom detection and patient monitoring framework using wifi. Smart Health, 19:100147.
Li, H., He, X., Chen, X., Fang, Y., and Fang, Q. (2019). Wi-motion: A robust human activity recognition usingWiFi signals. IEEE Access, 7:153287–153299.
Li, H., Ota, K., Dong, M., and Guo, M. (2018). Learning human activities through wi-fi channel state information with multiple access points. IEEE Communications Magazine, 56(5):124–129.
Li, W., Sforzin, A., Fedorov, S. e Karame, G. O. (2017). Towards Scalable and Private Industrial Blockchains. Em Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, páginas 9–14.
Li, Y., Gu, C., Dullien, T., Vinyals, O., & Kohli, P. (2019). Graph matching networks for learning the similarity of graph structured objects. In International conference on machine learning (pp. 3835–3845).
Liang, T., Sheng, X., Zhou, L., Li, Y., Gao, H., Yin, Y., & Chen, L. (2021). Mobile app recommendation via heterogeneous graph neural network in edge computing. Applied Soft Computing, 103, 107162.
Lightning Network Developers (2022). Lightning App Directory. Disponível em https://dev.lightning.community/lapps/.
Lin, D., Lin, J., Zhao, L., Wang, Z. J., & Chen, Z. (2021). Multilabel aerial image classification with a concept attention graph neural network. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12.
Lin, J.-H., Primicerio, K., Squartini, T., Decker, C. e Tessone, C. J. (2020). Lightning network: a second path towards centralisation of the bitcoin economy. New Journal of Physics, 22(8):083022.
Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch, P. e Sirer, E. G. (2017). Teechain: Scalable blockchain payments using trusted execution environments. arXiv preprint arXiv:1707.05454.
Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E. G. e Pietzuch, P. (2019). Teechain: A secure payment network with asynchronous blockchain access. Em Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, página 63–79, New York, NY, USA. Association for Computing Machinery.
Liu, J., Chen, Y., Wang, Y., Chen, X., Cheng, J., and Yang, J. (2018). Monitoring vital signs and postures during sleep using WiFi signals. IEEE Internet of Things Journal, 5(3):2071–2084.
Liu, J., Liu, H., Chen, Y., Wang, Y., and Wang, C. (2019). Wireless sensing for human activity: A survey. IEEE Communications Surveys & Tutorials, 22(3):1629–1645.
Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., and Cheng, J. (2015a). Tracking vital signs during sleep leveraging off-the-shelf wifi. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 267–276.
Liu, X., Cao, J., Tang, S., and Wen, J. (2014). Wi-sleep: Contactless sleep monitoring via wifi signals. In IEEE Real-Time Systems Symposium, pages 346– 355. IEEE.
Liu, X., Cao, J., Tang, S., Wen, J., and Guo, P. (2015b). Contactless respiration monitoring via off-the-shelf wifi devices. IEEE Transactions on Mobile Computing, 15(10):2466–2479.
Liu, Y., Wei, W., Sun, A., & Miao, C. (2014). Exploiting geographical neighborhood characteristics for location recommendation. In Proceedings of the 23rd acm international conference on conference on information and knowledge management (pp. 739–748).
Lombrozo, E., Lau, J. e Wuille, P. (2015). BIP 141: Segregated Witness (Consensus Layer). Disponível em [link]. Acessado em 9 de maio de 2022.
Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016). Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 254–269.
Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S. e Saxena, P. (2016). A Secure Sharding Protocol for Open Blockchains. Em Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, páginas 17–30.
Ma, J., Wang, Y., Wang, H., Wang, Y., and Zhang, D. (2016). When can we detect human respiration with commodity wifi devices? In ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pages 325–328.
Ma, Y., Zhou, G., and Wang, S. (2019a). WiFi sensing with channel state information: A survey. ACM Computing Surveys, 52(3).
Ma, Y., Zhou, G., and Wang, S. (2019b). Wifi sensing with channel state information: A survey. ACM Computing Surveys, 52(3):1–36.
Maguire, J. B., Grattarola, D., Mulligan, V. K., Klyshko, E., & Melo, H. (2021). Xenet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers. PLoS computational biology, 17(9), e1009037.
Mahmoud Abbasi, Amin Shahraki e Amir Taherkordi. “Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey”. en. Em: Computer Communications 170 (mar. de 2021), pp. 19–41. ISSN: 01403664. DOI: 10.1016/j. comcom.2021.01.021. URL: [link] (acesso em 14/04/2022).
Malavolta, G., Moreno-Sanchez, P., Kate, A. e Maffei, M. (2016). Silentwhispers: Enforcing security and privacy in decentralized credit networks. Cryptology ePrint Archive, Report 2016/1054. https://ia.cr/2016/1054.
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M. e Ravi, S. (2017). Concurrency and privacy with payment-channel networks. Em Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A. e Maffei, M. (2018). Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability. Cryptology ePrint Archive, Report 2018/472. https://ia.cr/2018/472.
Malekzadeh, M., Hajibabaee, P., Heidari, M., Zad, S., Uzuner, O., & Jones, J. H. (2021). Review of graph neural network in text classification. In 2021 ieee 12th annual ubiquitous computing, electronics & mobile communication conference (uemcon) (pp. 0084–0091).
Mateus Marim et al. “Caracterização e Classificação do Tráfego da Darknet com Modelos Baseados em Árvores de Decisão”. Em: Anais do XXXIX SBRC. Disponível em https://sol.sbc.org.br/index.php/sbrc/article/view/16716 Acessado em 07 de maio de 2022. Uberlândia: SBC, 2021, pp. 127–140.
Meng Wang, Yiqin Lu e Jiancheng Qin. “A dynamic MLP-based DDoS attack detection method using feature selection and feedback”. en. Em: Computers & Security 88 (jan. de 2020). Disponível em [link] Acessado em 07 de maio de 2022., p. 101645. ISSN: 01674048. DOI: 10.1016/j.cose.2019.101645.
Ming Li et al. “A deep learning method based on an attention mechanism for wireless network traffic prediction”. en. Em: Ad Hoc Networks 107 (out. de 2020), p. 102258. ISSN: 15708705. DOI: 10.1016/j.adhoc.2020.102258. URL: https://linkinghub.elsevier.com/retrieve/pii/S1570870519310923 (acesso em 03/05/2022).
Mohanty, S. P., Yanambaka, V. P., Kougianos, E. e Puthal, D. (2020). Pufchain: A hardware-assisted blockchain for sustainable simultaneous device and data security in the internet of everything (ioe). IEEE Consumer Electronics Magazine, 9(2):8–16.
Mondal, R., Mukherjee, D., Singh, P. K., Bhateja, V., & Sarkar, R. (2020). A new framework for smartphone sensor-based human activity recognition using graph neural network. IEEE Sensors Journal, 21(10), 11461–11468.
Monrat, A. A., Schelen, O., and Andersson, K. (2020). Performance Evaluation of Permissioned Blockchain Platforms. 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2020.
Múltiplos Autores (2022a). BOLT #0: Introduction and index. https://github.com/lightning/bolts/blob/master/00-introduction.md. Acessado em 9 de maio de 2022.
Múltiplos Autores (2022b). BOLT #2: Peer protocol for channel management. [link]. Acessado em 9 de maio de 2022.
Múltiplos Autores (2022c). BOLT #3: Bitcoin transaction and script formats. https://github.com/lightning/bolts/blob/master/03-transactions.md#fees. Acessado em 9 de maio de 2022.
Nadini, M., Alessandretti, L., Di Giacinto, F., Martino, M., Aiello, L. M., and Baronchelli, A. (2021). Mapping the nft revolution: market trends, trade networks, and visual features. Scientific reports, 11(1):1–11.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Nakamoto, S. and Bitcoin, A. (2008). A peer-to-peer electronic cash system. Bitcoin.–URL: https://bitcoin.org/bitcoin.pdf, 4.
Oluranti Jonathan, Sanjay Misra e Victor Osamor. “Comparative Analysis of Machine Learning techniques for Network Traffic Classification”. Em: IOP Conference Series: Earth and Environmental Science 655.1 (1 de fev. de 2021), p. 012025. ISSN: 1755-1307, 1755-1315. DOI: 10.1088/1755-1315/655/1/012025. URL: https://iopscience.iop.org/article/10.1088/1755-1315/655/1/012025 (acesso em 24/04/2022).
OMNeT++ (2022). Omnet++ discrete event simulator. Disponível em https://omnetpp.org/. Acessado em 9 de maio de 2022.
Osuntokun, O. (2018).
Otto, C. (2022). Rebalance-LND. Disponível em: https://github.com/C-Otto/rebalance-lnd. Acessado em 9 de maio de 2022.
Owerko,D., Gama, F., & Ribeiro, A. (2018). Predicting power outages using graph neural networks. In 2018 ieee global conference on signal and information processing (globalsip) (pp. 743–747).
Pal, O., Alam, B., Thakur, V., and Singh, S. (2021). Key management for blockchain technology. ICT Express, 7(1):76–80.
Pan Wang et al. “Datanet: Deep Learning Based Encrypted Network Traffic Classification in SDN Home Gateway”. Em: IEEE Access 6 (2018). Disponível em https://ieeexplore.ieee.org/document/8473682/ Acessado em 07 de maio de 2022., pp. 55380–55391. ISSN: 2169-3536. DOI: 10.1109/ ACCESS.2018.2872430.
Partha Pratim Ray. “A survey on cognitive packet networks: Taxonomy, state-of-the-art, recurrent neural networks, and QoS metrics”. en. Em: Journal of King Saud University - Computer and Information Sciences (jun. de 2021), S1319157821001324. ISSN: 13191578. DOI: 10.1016/j.jksuci.2021.05.017. URL: https://linkinghub.elsevier.com/retrieve/pii/S1319157821001324 (acesso em 05/05/2022).
Pascal Poupart et al. “Online flow size prediction for improved network routing”. en. Em: 2016 IEEE 24th International Conference on Network Protocols (ICNP). Singapore: IEEE, nov. de 2016, pp. 1–6. ISBN: 978-1-5090-3281-5. DOI: 10.1109/ICNP.2016.7785324. URL: [link] (acesso em 22/04/2022).
Pedro Casas, Juan Vanerio e Kensuke Fukuda. “GML learning, a generic machine learning model for network measurements analysis”. en. Em: 2017 13th International Conference on Network and Service Management (CNSM). Disponível em http://ieeexplore.ieee.org/document/8255998/ Acessado em 07 de maio de 2022. Tokyo: IEEE, nov. de 2017, pp. 1–9. ISBN: 978-3-901882-98-2. DOI: 10.23919/CNSM.2017.8255998. (Acesso em 22/04/2022).
Pedro Casas. “On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd”. Em: (2018), pp. 1–8. DOI: 10.23919/TMA. 2018.8506486.
Peng Li et al. “An Improved Stacked Auto-Encoder for Network Traffic Flow Classification”. Em: IEEE Network 32.6 (nov. de 2018), pp. 22–27. ISSN: 0890-8044, 1558-156X. DOI: 10.1109/MNET.2018.1800078. URL: https://ieeexplore.ieee.org/document/8553650/ (acesso em 16/04/2022).
Phyo Htet Pwint e Thanda Shwe. “Network Traffic Anomaly Detection based on Apache Spark”. Em: 2019 International Conference on Advanced Information Technologies (ICAIT). 2019 International Conference on Advanced Information Technologies (ICAIT). Yangon, Myanmar: IEEE, nov. de 2019, pp. 222–226. ISBN: 978-1-72815-173-1. DOI: 10.1109/AITC.2019.8920897. URL: https://ieeexplore.ieee.org/document/8920897/ (acesso em 20/04/2022).
Pickhardt, R. e Nowostawski, M. (2020). Imbalance measure and proactive channel rebalancing algorithm for the lightning network. Em 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), páginas 1–5. IEEE.
Pickhardt, R. e Richter, S. (2021). Optimally reliable & cheap payment flows on the lightning network. CoRR, abs/2107.05322.
Pillai, A., Saraswat, V., and V. R., A. (2019). Smart wallets on blockchain—attacks and their costs. In Wang, G., El Saddik, A., Lai, X., Martinez Perez, G., and Choo, K.-K. R., editors, Smart City and Informatization, pages 649–660, Singapore. Springer Singapore.
Pillai, B., Muthukkumarasamy, V., and Biswas, K. (2017). Challenges in designing a blockchain platform.
Poon, J. e Buterin, V. (2017). Plasma: Scalable Autonomous Smart Contracts. White paper, páginas 1–47.
Poon, J. e Dryja, T. (2016). The bitcoin lightning network: Scalable off-chain instant payments.
Poonam Pandey e Radhika Prabhakar. “An analysis of machine learning techniques (J48 AdaBoost)-for classification”. Em: 2016 1st India International Conference on Information Processing (IICIP). 2016, pp. 1–6.
Popov, S. (2017). The tangle. cit. on, página 131. http://www.descryptions.com/Iota.pdf. Acessado em 31 de outubro de 2018.
Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E., and Sandford, R. (2018). Eip-1155: Multi token standard,"ethereum improvement proposals, no. 1155, june 2018. https://eips.ethereum.org/EIPS/eip-1155.
Raza Ul Mustafa, David Moura e Christian Esteve Rothenberg. “Machine Learning Approach to Estimate Video QoE of Encrypted DASH Traffic in 5G Networks”. Em: 2021 IEEE Statistical Signal Processing Workshop (SSP). 2021, pp. 586–589. DOI: 10.1109/SSP49050.2021.9513804.
Razan M. AlZoman e Mohammed J. F. Alenazi. “A Comparative Study of Traffic Classification Techniques for Smart City Networks”. Em: Sensors 21.14 (8 de jul. de 2021), p. 4677. ISSN: 1424-8220. DOI: 10.3390/s21144677. URL: https://www.mdpi.com/1424-8220/21/14/4677 (acesso em 22/04/2022).
Rebello, G. A. F., Camilo, G. F., Guimarães, L. C., de Souza, L. A. C., Thomaz, G. A. e Duarte, O. C. (2021b). A security and performance analysis of proof-based consensus protocols. Annals of Telecommunications, páginas 1–21.
Rebello, G. A. F., Camilo, G. F., Potop-Butucaru, M., Campista, M. E. M., de Amorim, M. D. e Costa, L. H. M. K. (2022). PCNsim: A Flexible and Modular Simulator for Payment Channel Networks. Demos do IEEE International Conference on Computer Communications. A ser publicado.
Rebello, G. A. F., Camilo, G. F., Silva, L. G., de Souza, L. A., Guimarães, L. C. e Duarte, O. C. M. (2019). Segurança na internet do futuro: Provendo confiança distribuída através de correntes de blocos na virtualização de funções de rede. Sociedade Brasileira de Computação.
Rebello, G. A., Potop-Butucaru, M., de Amorim, M. e Duarte, O. C. (2021a). Protegendo redes de canais de pagamento sem fio com janelas de tempo de bloqueio mínimas. Em Anais do XXI SBSeg, páginas 295–308. SBC.
Rhee, S., Seo, S., & Kim, S. (2017). Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. arXiv preprint arXiv:1711.05859.
Ribeiro, M. (2022). Pela primeira vez, pix supera cartão em transações. Disponível em [link]. Acessado em 9 de maio de 2022.
Rogers, I., Carter, D., Morgan, B., and Edgington, A. (2022). Diminishing dreams: The scoping down of the music nft. M/C Journal, 25(2).
Rohrer, E., Malliaris, J. e Tschorsch, F. (2019). Discharged payment channels: Quantifying the lightning network’s resilience to topology-based attacks. Em 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), páginas 347–356.
Roos, S., Moreno-Sanchez, P., Kate, A. e Goldberg, I. (2017). Settling payments fast and private: Efficient decentralized routing for path-based transactions.
Rosenfeld, M. (2012). Overview of colored coins. White paper, bitcoil. co. il, 41:94.
Rouhani, S. and Deters, R. (2017). Performance analysis of ethereum transactions in private blockchain. In 2017 8th IEEE(ICSESS), pages 70–74. IEEE.
Rouhani, S. and Deters, R. (2019). Security, performance, and applications of smart contracts: A systematic survey. IEEE Access, 7:50759– 50779.
Sakakibara, Y., Morishima, S., Nakamura, K. e Matsutani, H. (2018). A hardware-based caching system on fpga nic for blockchain. IEICE Transactions on Information and Systems, 101(5):1350–1360.
Sanchez, J., Neff, C., & Tabkhi, H. (2021). Real-world graph convolution networks (rwgcns) for action recognition in smart video surveillance. In 2021 ieee/acm symposium on edge computing (sec) (pp. 121–134).
Sayeed, S., Marco-Gisbert, H., and Caira, T. (2020). Smart contract: Attacks and protections. IEEE Access, 8:24416–24427.
Schär, F. (2020). Decentralized finance: On blockchain-and smart contractbased financial markets. Available at SSRN 3571335.
Schulz, M., Gringoli, F., Link, J., and Hollick, M. (2018). Shadow Wi-Fi: Teaching smartphones to transmit raw signals and to extract channel state information to implement practical covert channels over Wi-Fi. ACM International Conference on Mobile Systems, Applications, and Services, pages 256–268.
Schwartz, D., Youngs, N. e Britto, A. (2014). The ripple protocol consensus algorithm. Ripple Labs Inc White Paper. https://ripple.com/files/ripple_consensus_whitepaper.pdf.
Seres, I. A., Gulyás, L., Nagy, D. A. e Burcsi, P. (2020). Topological analysis of bitcoin’s lightning network. Em Mathematical Research for Blockchain Economy, páginas 1–12. Springer.
Shady A. Mohammed, Shervin Shirmohammadi e Sa’di Altamimi. “A Multimodal Deep Learning-Based Distributed Network Latency Measurement System”. en. Em: IEEE Transactions on Instrumentation and Measurement 69.5 (mai. de 2020), pp. 2487–2494. ISSN: 0018-9456, 1557-9662. DOI: 10.1109 / TIM.2020.2967877. URL: https://ieeexplore.ieee.org/document/8963623/ (acesso em 24/04/2022).
Shang, J. and Wu, J. (2016). Fine-grained vital signs estimation using commercial wi-fi devices. In Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop, pages 30–32.
Sharat Chandra Madanapalli et al. “ReCLive: Real-Time Classification and QoE Inference of Live Video Streaming Services”. en. Em: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). Tokyo, Japan: IEEE, jun. de 2021, pp. 1–7. ISBN: 978-1-66541-494-4. DOI: 10.1109/IWQOS52092.2021. 9521288. URL: https://ieeexplore.ieee.org/document/9521288/ (acesso em 04/05/2022).
Sharma, A., Li, J., Mishra, D., Batista, G., and Seneviratne, A. (2021). Passive WiFi CSI sensing based machine learning framework for COVIDSafe occupancy monitoring. In IEEE International Conference on Communications Workshops, pages 1–6. IEEE.
Shen, Y., Li, H., Yi, S., Chen, D., & Wang, X. (2018). Person re-identification with deep similarity-guided graph neural network. In Proceedings of the european conference on computer vision (eccv) (pp. 486–504).
Shi, Z., Zhang, J. A., Xu, R., and Fang, G. (2018). Human activity recognition using deep learning networks with enhanced channel state information. In IEEE Globecom Workshops, pages 1–6. IEEE.
Shuyuan Zhao, Yongzheng Zhang e Yafei Sang. “Towards Unknown Traffic Identification via Embeddings and Deep Autoencoders”. Em: 2019 26th International Conference on Telecommunications (ICT). 2019 26th International Conference on Telecommunications (ICT). Disponível em [link] Acessado em 07 de maio de 2022. Hanoi, Vietnam: IEEE, abr. de 2019, pp. 85–89. ISBN: 978-1-72810-273-3. DOI: 10.1109/ ICT.2019.8798803.
Singh, A., Click, K., Parizi, R. M., Zhang, Q., Dehghantanha, A. e Choo, K.-K. R. (2020). Sidechain Technologies in Blockchain Networks: An Examination and State-of-the-Art Review. Journal of Network and Computer Applications, 149:102471.
Sivaraman, V., Venkatakrishnan, S. B., Alizadeh, M., Fanti, G. e Viswanath, P. (2018). Routing Cryptocurrency with the Spider Network. Em Proceedings of the ACM Workshop on Hot Topics in Networks, páginas 29–35.
Sivaraman, V., Venkatakrishnan, S. B., Ruan, K., Negi, P., Yang, L., Mittal, R., Fanti, G. e Alizadeh, M. (2020). High throughput cryptocurrency routing in payment channel networks. Em 17th USENIX NSDI 20, páginas 777–796.
Skardinga, J., Gabrys, B., & Musial, K. (2021). Foundations and modelling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access.
SNDlib. Acessado em 05/05/2022. URL: http://sndlib.zib.de/home.action.
Sorber, L., Van Barel, M., and De Lathauwer, L. (2013). Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(l_r,l_r,1) terms, and a new generalization. SIAM Journal on Optimization, 23(2):695–720.
Spilman, J. (2013). [Bitcoin-development] Anti DoS for tx Replacement. Disponível em https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html.
Stradling, A. and Voorhees, E. (2018). System and method of providing a multi-validator oracle. US Patent App. 15/715,770.
Stuart J. Russel e Peter I.Norvig. Artificial Intelligence: A Modern Approach. Pearson, 2020.
Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M. J. e Ford, B. (2017). Scalable Bias-Resistant Distributed Randomness. Em 2017 IEEE Symposium on Security and Privacy (SP), páginas 444–460.
Tan, B., Chen, Q., Chetty, K., Woodbridge, K., Li, W., and Piechocki, R. (2018). Exploiting WiFi Channel State Information for Residential Healthcare Informatics. IEEE Communications Magazine, 56(5):130–137.
Tan, B., Chen, Q., Chetty, K.,Woodbridge, K., Li,W., and Piechocki, R. (2018). Exploiting wifi channel state information for residential healthcare informatics. IEEE Communications Magazine, 56(5):130–137.
Tang,W.,Wang,W., Fanti, G. e Oh, S. (2020). Privacy-utility tradeoffs in routing cryptocurrency over payment channel networks. Proc. ACM Meas. Anal. Comput. Syst., 4(2).
Team, Z. e Barrett, P. (2018). The Zilliqa Project: A Secure, Scalable Blockchain Platform. Zilliqa, páginas 1–18.
The Hyperledger Foundation (2022). Hyperledger sawtooth. Disponível em https://sawtooth.hyperledger.org/. Acessado em 9 de maio de 2022.
Tom M Mitchell. Machine Learning. McGraw-Hill Science, 1997.
Tomy, A., Razzanelli, M., Di Lauro, F., Rus, D., & Della Santina, C. (2022). Estimating the state of epidemics spreading with graph neural networks. Nonlinear Dynamics, 1–15.
Tran, D. V., Navarin, N., & Sperduti, A. (2018). On filter size in graph convolutional networks. In 2018 ieee symposium series on computational intelligence (ssci) (pp. 1534–1541).
Tsitsulin, A., Palowitch, J., Perozzi, B., & Müller, E. (2020). Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904.
Uchiyama, A., Saruwatari, S., Maekawa, T., Ohara, K., and Higashino, T. (2021). Context recognition by wireless sensing: A comprehensive survey. Journal of Information Processing, 29:46–57.
Utkarsh Goel et al. “Survey of End-to-End Mobile Network Measurement Testbeds, Tools, and Services”. Em: IEEE Communications Surveys Tutorials 18.1 (2016), pp. 105–123. DOI: 10.1109/COMST.2015.2485979.
Valeonti, F., Bikakis, A., Terras, M., Speed, C., Hudson-Smith, A., and Chalkias, K. (2021). Crypto collectibles, museum funding and openglam: Challenges, opportunities and the potential of non-fungible tokens (nfts). Applied Sciences, 11(21).
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. stat, 1050, 20.
Visa (2022). Visa Acceptance for Retailers. Disponível em https://usa.visa.com/run-your-business/small-business-tools/retail.html. Acessado em 9 de maio de 2022.
Visa Inc. (2022). Q2 2021 operational performance data. Acessado em 9 de maio de 2022.
Vitor Zanotelli et al. “Caracterização e Previsão de Falhas em Serviços de Conectividade: uma Aplicação à Rede Ipê”. Em: Anais do XXXIX SBRC. Disponível em https://sol.sbc.org.br/index.php/sbrc/article/view/16717 Acessado em 07 de maio de 2022. Uberlândia: SBC, 2021, pp. 141–154.
Vogelsteller, F. and Buterin, V. (2015). Eip-20: Token standard, ethereum improvement proposals. https://eips.ethereum.org/EIPS/eip-20.
Wang, G., Shi, Z. J., Nixon, M. e Han, S. (2019a). SoK: Sharding on Blockchain. Em Proceedings of the 1st ACM Conference on Advances in Financial Technologies, páginas 41–61.
Wang, G., Zou, Y., Zhou, Z., Wu, K., and Ni, L. M. (2016a). We can hear you with wi-fi! IEEE Transactions on Mobile Computing, 15(11):2907–2920.
Wang, H., Zhang, D., Ma, J., Wang, Y., Wang, Y., Wu, D., Gu, T., and Xie, B. (2016b). Human respiration detection with commodity wifi devices: do user location and body orientation matter? In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 25–36.
Wang, J. e Wang, H. (2019). Monoxide: Scale out Blockchains with Asynchronous Consensus Zones. Em 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), páginas 95–112.
Wang, P., Guo, B., Xin, T., Wang, Z., and Yu, Z. (2017a). Tinysense: Multi-user respiration detection using wi-fi csi signals. In IEEE International Conference on e-Health Networking, Applications and Services, pages 1–6. IEEE.
Wang, P., Xu, H., Jin, X. e Wang, T. (2019b). Flash: efficient dynamic routing for offchain networks. Em Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies, páginas 370–381.
Wang, Q., Li, R., Wang, Q., and Chen, S. (2021). Non-fungible token (nft): Overview, evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447.
Wang, Q., Yu, J., Chen, S. e Xiang, Y. (2020). SoK: Diving into DAG-based blockchain systems. https://arxiv.org/abs/2012.06128v2.
Wang, X., Feng, Q., and Chai, J. (2018). The research of consortium blockchain dynamic consensus based on data transaction evaluation. In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), volume 2, pages 214–217. IEEE.
Wang, X., Yang, C., and Mao, S. (2017b). PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In IEEE International Conference on Distributed Computing Systems, pages 1230–1239. IEEE.
Wang, X., Yang, C., and Mao, S. (2017c). Tensorbeat: Tensor decomposition for monitoring multiperson breathing beats with commodity wifi. ACM Trans. Intell. Syst. Technol., 9(1).
Wang, X., Yang, C., and Mao, S. (2020). On CSI-Based Vital Sign Monitoring Using CommodityWiFi. ACM Transactions on Computing for Healthcare, 1(3):1–27.
Wang, Z., Jiang, K., Hou, Y., Dou, W., Zhang, C., Huang, Z., and Guo, Y. (2019). A survey on human behavior recognition using channel state information. IEEE Access, 7:155986–156024.
Warren S. McCulloch e Walter Pitts. “A logical calculus of the ideas immanent in nervous activity”. Em: The bulletin of mathematical biophysics 4 (1943), p. 19.
Wei Wang et al. “End-to-end encrypted traffic classification with one-dimensional convolution neural networks”. Em: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). Disponível em http://ieeexplore.ieee.org/document/8004872/ Acessado em 07 de maio de 2022. Beijing, China: IEEE, jul. de 2017, pp. 43–48. ISBN: 978-1-5090-6727-5. DOI: 10.1109/ ISI.2017.8004872.
Wei Wang et al. “Malware traffic classification using convolutional neural network for representation learning”. en. Em: 2017 International Conference on Information Networking (ICOIN). Da Nang, Vietnam: IEEE, 2017, pp. 712–717. ISBN: 978-1-5090-5124-3. DOI: 10.1109/ICOIN.2017.7899588. URL: http://ieeexplore.ieee.org/document/7899588/ (acesso em 30/04/2022).
Weinstein, S. and Ebert, P. (1971). Data transmission by Frequency-Division Multiplexing using the Discrete Fourier Transform. IEEE Transactions on Communication Technology, 19(5):628–634.
Wood, G. (2014). Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151:1–32.
World Bank (2022). GDP (current US$). Acessado em 9 de maio de 2022.
Wu, D., Zhang, D., Xu, C., Wang, H., and Li, X. (2017). Device-free wifi human sensing: From pattern-based to model-based approaches. IEEE Communications Magazine, 55(10):91–97.
Wu, L., Cui, P., Pei, J., Zhao, L., & Song, L. (2022). Graph neural networks. In Graph neural networks: Foundations, frontiers, and applications (pp. 27–37). Springer.
Wu, S., Sun, F., Zhang, W., & Cui, B. (2020). Graph neural networks in recommender systems: a survey. arXiv preprint arXiv:2011.02260.
Wu, S., Zhang, Y., Gao, C., Bian, K., & Cui, B. (2020). Garg: anonymous recommendation of point-of-interest in mobile networks by graph convolution network. Data Science and Engineering, 5(4), 433–447.
Wu, X., Chu, Z., Yang, P., Xiang, C., Zheng, X., and Huang, W. (2018). Tw-see: Human activity recognition through the wall with commodity wi-fi devices. IEEE Transactions on Vehicular Technology, 68(1):306–319.
Wu, Y., Dai, H.-N., & Tang, H. (2021). Graph neural networks for anomaly detection in industrial internet of things. IEEE Internet of Things Journal.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4–24.
Xia, P., Wang, H., Zhang, B., Ji, R., Gao, B., Wu, L., Luo, X., and Xu, G. (2020). Characterizing cryptocurrency exchange scams. Computers & Security, 98:101993.
Xiao, F., Guo, Z., Zhu, H., Xie, X., and Wang, R. (2017). Ampn: Real-time los/nlos identification with wifi. In IEEE International Conference on Communications (ICC), pages 1–7. IEEE.
Xiao, J., Zhou, Z., Yi, Y., and Ni, L. M. (2016). A survey on wireless indoor localization from the device perspective. ACM Computing Surveys, 49(2):1–31.
Xiao, Y., Yao, L., Pei, Q., Wang, X., Yang, J., & Sheng, Q. Z. (2020). Mgnn: Mutualistic graph neural network for joint friend and item recommendation. IEEE Intelligent Systems, 35(5), 7–17.
Xiao, Y., Zhang, N., Lou, W. e Hou, Y. T. (2020). A survey of distributed consensus protocols for blockchain networks. IEEE Communications Surveys & Tutorials, 22(2):1432–1465.
Xiao, Y., Zhang, N., Lou, W., and Hou, Y. T. (2020). A survey of distributed consensus protocols for blockchain networks. IEEE Communications Surveys & Tutorials, 22(2):1432–1465.
Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J. e Liu, Y. (2019). A Survey on the Scalability of Blockchain Systems. IEEE Network, 33(5):166–173.
Xie, Y., Li, Z., and Li, M. (2018). Precise power delay profiling with commodity wi-fi. IEEE Transactions on Mobile Computing, 18(6):1342–1355.
Yang, D., Long, C., Xu, H. e Peng, S. (2020). A Review on Scalability of Blockchain. Em Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, páginas 1–6.
Yang, F., Zhou,W.,Wu, Q., Long, R., Xiong, N. N. e Zhou, M. (2019). Delegated Proof of Stake with Downgrade: A Secure and Efficient Blockchain Consensus Algorithm with Downgrade Mechanism. IEEE Access, 7:118541–118555.
Yang, M., Kong, B., Dang, R., & Yan, X. (2022). Classifying urban functional regions by integrating buildings and points-of-interest using a stacking ensemble method. International Journal of Applied Earth Observation and Geoinformation, 108, 102753.
Yang, Y., Cao, J., Liu, X., and Xing, K. (2018). Multi-person sleeping respiration monitoring with cots wifi devices. In IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pages 37–45. IEEE.
Yang, Z., Zhou, Z., and Liu, Y. (2013). From rssi to csi: Indoor localization via channel response. ACM Computing Surveys, 46(2):1–32.
Yao, L.,Mao, C., & Luo, Y. (2019). Graph convolutional networks for text classification. In Proceedings of the aaai conference on artificial intelligence (Vol. 33, pp. 7370–7377).
Ye, J., Zhao, J., Ye, K., & Xu, C. (2020). Multi-stgcnet: A graph convolution based spatialtemporal framework for subway passenger flowforecasting. In 2020 international joint conference on neural networks (ijcnn) (pp. 1–8).
Yin, C., Xiong, Z., Chen, H.,Wang, J., Cooper, D., & David, B. (2015). A literature survey on smart cities. Science China Information Sciences, 58(10), 1–18.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining (pp. 974–983).
Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems, 31.
Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. en. Em: arXiv:1408.5882 [cs] (set. de 2014). arXiv: 1408.5882. URL: http://arxiv.org/abs/1408.5882 (acesso em 30/04/2022).
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., & Shen, Y. (2020). Graph contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33, 5812–5823.
Yousefi, S., Narui, H., Dayal, S., Ermon, S., and Valaee, S. (2017). A survey on behavior recognition using wifi channel state information. IEEE Communications Magazine, 55(10):98–104.
Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
Zabka, P., Förster, K.-T., Schmid, S. e Decker, C. (2021). Node classification and geographical analysis of the lightning cryptocurrency network. Em International Conference on Distributed Computing and Networking 2021, ICDCN ’21, página 126–135, New York, NY, USA. Association for Computing Machinery.
Zainib Noshad et al. “Fault Detection in Wireless Sensor Networks through the Random Forest Classifier”. en. Em: Sensors 19.7 (abr. de 2019), p. 1568. ISSN: 1424-8220. DOI: 10.3390/s19071568. URL: https://www.mdpi.com/1424-8220/19/7/1568 (acesso em 24/04/2022).
Zamani, M., Movahedi, M. e Raykova, M. (2018). Rapidchain: Scaling blockchain via full sharding. Em Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, páginas 931–948.
Zeng, Y., Wu, D., Gao, R., Gu, T., and Zhang, D. (2018). Fullbreathe: Full human respiration detection exploiting complementarity of csi phase and amplitude of wifi signals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3):1–19.
Zeng, Y., Wu, D., Xiong, J., Liu, J., Liu, Z., and Zhang, D. (2020). Multisense: Enabling multi-person respiration sensing with commodity wifi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3):1–29.
Zeng, Y., Wu, D., Xiong, J., Yi, E., Gao, R., and Zhang, D. (2019). FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3):1–26.
Zhang, D., Hu, Y., Chen, Y., and Zeng, B. (2019). BreathTrack: Tracking indoor human breath status via commodity WiFi. IEEE Internet of Things Journal, 6(2):3899–3911.
Zhang, F., Zhang, D., Xiong, J., Wang, H., Niu, K., Jin, B., and Wang, Y. (2018). From Fresnel Diffraction Model to Fine-grained Human Respiration Sensing with Commodity Wi-Fi Devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, pages 1–23.
Zhang, J., Xu, W., Hu, W., and Kanhere, S. S. (2017). Wicare: Towards in-situ breath monitoring. In EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 126–135.
Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional networks: a comprehensive review. Computational Social Networks, 6(1), 1–23.
Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering.
Zhao, L. e Yu, J. (2019). Evaluating DAG-based blockchains for IoT. Em 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), páginas 507–513.
Zhao, M., Adib, F., and Katabi, D. (2018). Emotion recognition using wireless signals. Communications of the ACM, 61(9):91–100.
Zhao, T., Liu, Y., Neves, L.,Woodford, O., Jiang, M., & Shah, N. (2021). Data augmentation for graph neural networks. In Proceedings of the aaai conference on artificial intelligence (Vol. 35, pp. 11015–11023).
Zhitang Chen et al. “Seq2Img: A sequence-to-image based approach towards IP traffic classification using convolutional neural networks”. Em: 2017 IEEE International Conference on Big Data (Big Data). 2017 IEEE International Conference on Big Data (Big Data). Disponível em [link] Acessado em 07 de maio de 2022. Boston, MA: IEEE, dez. de 2017, pp. 1271–1276. ISBN: 978-1-5386-2715-0. DOI: 10.1109/ BigData.2017.8258054.
Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., . . . Sun, M. (2020). Graph neural networks: A review of methods and applications. AI Open, 1, 57–81.
Zhou, Q., Huang, H., Zheng, Z. e Bian, J. (2020). Solutions to Scalability of Blockchain: A Survey. IEEE Access, 8:16440–16455.
Zhu, D., Pang, N., Li, G., and Liu, S. (2017). Notifi: A ubiquitous wifibased abnormal activity detection system. In International Joint Conference on Neural Networks, pages 1766–1773. IEEE.
Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., & Gu, Q. (2019). Layer-dependent importance sampling for training deep and large graph convolutional networks. Advances in neural information processing systems, 32.
Zou, W., Lo, D., Kochhar, P. S., Le, X.-B. D., Xia, X., Feng, Y., Chen, Z., and Xu, B. (2019). Smart contract development: Challenges and opportunities. IEEE Transactions on Software Engineering.
Detalhes sobre o formato disponível para publicação: Volume Completo
© O(s) autor(es), 2022.

Esse trabalho foi publicado de acordo com os termos da licença Creative Commons Attribution 4.0 International License
.