Minicursos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde

Autores

Natalia Castro Fernandes (ed.)
UFF

Sinopse

O Livro de Minicursos do SBCAS 2023 traz os textos dos minicursos selecionados e apresentados nesta edição do evento. O livro está organizado em cinco capítulos abordando temas de aprendizado de máquinas, padrões de dados de saúde digital, IoT e telessaúde.

O Capítulo 1, intitulado “Internet das Coisas e Ambientes Inteligentes no contexto da Saúde“, apresenta um estudo sobre a aplicação de Internet das Coisas e ambientes inteligentes dentro do contexto da Saúde.

O Capítulo 2, intitulado “Aprendizado de Máquina Supervisionado para Séries Temporais na Área da Saúde”, apresenta técnicas para lidar com dados temporais para a área da saúde, sob os pontos de vista teórico e prático.

O Capítulo 3, intitulado “Explicando as decisões com IAs: Demonstrando sua aplicação em imagens médicas”, aborda aspectos teóricos para explicar as decisões tomadas pelos modelos de IA, em especial as baseadas em modelos de Redes Neurais Profundas (DNN) e sua importância no contexto médico, apresentando vários métodos de explicação de modelos DNN.

O Capítulo 4, intitulado “Padrões e Soluções para Armazenamento, Compartilhamento e Estruturação de Dados em Saúde Digital: Privacidade, Integração e Desafios”, explora padrões de Electronic Medical Records (EMRs), desafios de segurança e soluções baseadas em cadeia de blocos para interoperabilidade e compartilhamento seguro de dados na área da saúde.

O Capítulo 5, intitulado “Nova Geração da Telessaúde: Oportunidades, Tendências e Desafios”, conclui o livro, levantando as principais e mais novas técnicas computacionais que estão sendo adotadas ou vislumbradas para uso em telessaúde, além de discutir novos projetos de computação aplicados à telessaúde e o posicionamento do Brasil dentro desse cenário.

Capítulos:

1. Internet das Coisas e Ambientes Inteligentes no contexto da Saúde
Analúcia Schiaffino Morales, Sílvio César Cazella
2. Aprendizado de Máquina Supervisionado para Séries Temporais na Área da Saúde
Diego F. Silva, Guilherme G. Arcencio, José Gilberto B. M. Júnior, Vinícius M. A. de Souza, Yuri G. A. da Silva
3. Explicando as decisões com IAs: Demonstrando sua aplicação em imagens médicas
Elineide Silva dos Santos, Justino Duarte Santos, Luis Henrique Silva Vogado, Leonardo Pereira de Sousa, Hélcio de Abreu Soares, Rodrigo de Melo Souza Veras
4. Padrões e Soluções para Armazenamento, Compartilhamento e Estruturação de Dados em Saúde Digital: Privacidade, Integração e Desafios
Nicollas R. de Oliveira, Yago de R. dos Santos, Ana Carolina R. Mendes, Guilherme N. N. Barbosa, Marcela T. de Oliveira, Rafael Valle, Dianne S. V. Medeiros, Diogo M. F. Mattos
5. Nova Geração da Telessaúde: Oportunidades, Tendências e Desafios
Gabriel C. de Almeida, Allan C. N. dos Santos, Celine L. de A. Soares, Paula Caroline A. Pinto, Felipe da S. Dal Bello, Yolanda Eliza M. Boechat, Flávio Luiz Seixas, Alair Augusto S. M. D. dos Santos, Claudio T. Mesquita, Evandro T. Mesquita, Débora C. Muchaluat-Saade, Natalia C. Fernandes

Downloads

Não há dados estatísticos.

Referências

Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal, 4662(c), 1–1. https://doi.org/10.1109/jiot.2019.2931647

Abomhara, M. e Ben Lazrag, M. (2016). UML/OCLbased modeling of work-based access control policies for collaborative healthcare systems. Em 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), p. 1–6.

Abomhara, M., Yang, H. e Køien, G. M. (2016). Access control model for cooperative healthcare environments: Modeling and verification. Em 2016 IEEE International Conference on Healthcare Informatics (ICHI), p. 46–54. IEEE.

Aceto, G., Persico, V., & Pescapé, A. (2018). The role of Information and Communication Technologies in healthcare: taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107(July 2017), 125–154. https://doi.org/10.1016/j.jnca.2018.02.008

Acevedo, B. P., Dattatri, N., Le, J., Lappinga, C. e Collins, N. L. (2022). Cognitive training with neurofeedback using fNIRS improves cognitive function in older adults. International Journal of Environmental Research and Public Health, 19(9):5531.

Acharya, T. and Ray, A. K. (2005). Image processing: principles and applications. John Wiley & Sons.

Agrawal, D., Minocha, S., Namasudra, S. e Gandomi, A. H. (2022). A robust drug recall supply chain management system using hyperledger blockchain ecosystem. Computers in biology and medicine, 140:105100.

Al Omar, A., Rahman, M. S., Basu, A. e Kiyomoto, S. (2017). MediBChain: A blockchain based privacy preserving platform for healthcare data. Em Security, Privacy, and Anonymity in Computation, Communication, and Storage: SpaCCS 2017 International Workshops, Guangzhou, China, December 12-15, 2017, Proceedings 10, p. 534–543. Springer.

Al-Qatatsheh, A., Morsi, Y., Zavabeti, A., Zolfagharian, A., Salim, N., Kouzani, A. Z., Mosadegh, B., & Gharaie, S. (2020). Blood pressure sensors: Materials, fabrication methods, performance evaluations and future perspectives. Sensors (Switzerland), 20(16), 1–77. https://doi.org/10.3390/s20164484

Al-Turjman, F., Nawaz, M. H., & Ulusar, U. D. (2020). Intelligence in the Internet of Medical Things era: A systematic review of current and future trends. Computer Communications, 150(December 2019), 644–660. https://doi.org/10.1016/j.comcom.2019.12.030

Albeyatt, A. (2018). Medicalchain white paper 2.1. Relatório técnico, MedChain White Paper 2.1.

Alsuliman, T., Humaidan, D., and Sliman, L. (2020). Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality? Current research in translational medicine, 68(4):245–251.

Amati, F., Santobuono, V., Bozza, N., Latorre, M., Memeo, R. e Favale, S. (2022). Biosensors in cardiology. t-care project: a preliminary study on an innovative wearable telemonitoring system. Europace, 24(Supplement_1):euac053–589.

Anderson, J. (2018). Securing, standardizing, and simplifying electronic health record audit logs through permissioned blockchain technology. UNTHRR.

Andrès, E., Meyer, L., Zulfiqar, A.-A., Hajjam, M., Talha, S., Bahougne, T., Ervé, S., Hajjam, J., Doucet, J., Jeandidier, N. et al. (2019). Telemonitoring in diabetes: evolution of concepts and technologies, with a focus on results of the more recent studies. Journal of medicine and life, 12(3):203.

Andrès, E., Talha, S., Jeandidier, N., Meyer, L., Hajjam, M. e Hajjam, A. (2018). Telemedicine in chronic diseases: the time of maturity with telemedicine 2.0 in the setting of chronic heart failure and diabetes mellitus. Curr Res Diabetes Obes J, 6:1–4.

Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

Ang, L.-M. and Seng, K. P. (2016). Big sensor data applications in urban environments. Big Data Research, 4:1–12.

Araujo Gomes de Castro, F., Oliveira dos Santos, Á., Valadares Labanca Reis, G., Brandão Viveiros, L., Hespanhol Torres, M. e de Oliveira Junior, P. P. (2020). Telemedicina rural e COVID-19: ampliando o acesso onde a distância já era regra. Revista Brasileira de Medicina de Família e Comunidade, 15(42):2484.

Atezaz Saeed, S., Jones, K., Sacks, A. J., Craven, K. e Xue, Y. L. (2023). Maternal outreach through telehealth for rural sites: The MOTHeRS project. North Carolina Medical Journal, 84(1).

Azaria, A., Ekblaw, A., Vieira, T. e Lippman, A. (2016). MedRec: Using blockchain for medical data access and permission management. Em 2016 2nd international conference on open and big data (OBD), p. 25–30. IEEE.

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data mining and knowledge discovery, 31:606–660.

Bagnall, A., Lines, J., Hills, J., and Bostrom, A. (2015). Timeseries classification with cote: The collective of transformation-based ensembles. IEEE Transactions on Knowledge and Data Engineering, 27(9):2522–2535.

Bai, L., Yang, D., Wang, X., Tong, L., Zhu, X., Zhong, N., Bai, C., Powell, C. A., Chen, R., Zhou, J. et al. (2020). Chinese experts’ consensus on the internet of things-aided diagnosis and treatment of coronavirus disease 2019 (covid-19). Clinical eHealth, 3:7–15.

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., and Gamboa, H. (2020). Tsfel: Time series feature extraction library. SoftwareX, 11:100456.

Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 52(1), 1–37. https://doi.org/10.1007/s10462-018-9654-y

Beaklini, A. C., Vale, E. R., Filho, R. P., Dal Bello, J. C. R., Boechat, Y. E., Carrano, R. C. e Fernandes, N. C. (2017). Interiorização da medicina utilizando um sistema de telepresença holográfico. Em Anais do XXIII Simpósio Brasileiro de Sistemas Multimídia e Web: Workshop do CT-Vídeo, chapter 6. SBC, 1 ediÁ„o.

Becker, D. E. (2006). Fundamentals of electrocardiography interpretation. Anesthesia progress, 53(2):53–64.

Bedi, S. (2018). Lighter, leaner, lifesaving: Af tests wearable medical tech. Acesso em 08 de junho de 2023.

Bejnordi, B. E., Mullooly, M., Pfeiffer, R. M., Fan, S., Vacek, P. M., Weaver, D. L., Herschorn, S., Brinton, L. A., van Ginneken, B., Karssemeijer, N., Beck, A. H., Gierach, G. L., van der Laak, J. A.W. M., and Sherman, M. E. (2018). Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Modern Pathology, 31:1502–1512.

Bertelli, M. O., Zorzi, S., Buonaguro, E. F., Bianco, A., Armellini, M. e Scattoni, M. L. (2022). Teleassistance and telerehabilitation: Covid-19, other epidemic situations and future prospects. Em Bertelli, M. O., Deb, S. S., Munir, K., Hassiotis, A. e Salvador-Carulla, L., editors, Textbook of Psychiatry for Intellectual Disability and Autism Spectrum Disorder, p. 1031–1050. Springer International Publishing.

Besaleva, L. I. e Weaver, A. C. (2016). Applications of social networks and crowdsourcing for disaster management improvement. Computer, 49(5):47–53.

Bhatt, A. B. e Bhatt (2021). Healthcare Information Technology for Cardiovascular Medicine. Springer.

Bini, S. A., Schilling, P. L., Patel, S. P., Kalore, N. V., Ast, M. P., Maratt, J. D., Schuett, D. J., Lawrie, C. M., Chung, C. C. e Steele, G. D. (2020). Digital orthopaedics: A glimpse into the future in the midst of a pandemic. The Journal of Arthroplasty, 35(7, Supplement):S68–S73. Special COVID-19 Supplement.

Bitar, H. e Alismail, S. (2021). The role of ehealth, telehealth, and telemedicine for chronic disease patients during covid-19 pandemic: A rapid systematic review. Digital health, 7:20552076211009396.

Blandford, A., Wesson, J., Amalberti, R., AlHazme, R. e Allwihan, R. (2020). Opportunities and challenges for telehealth within, and beyond, a pandemic. The Lancet Global Health, 8(11):e1364–e1365.

Bloom, P. P., Ventoso, M., Tapper, E., Ha, J. e Richter, J. M. (2022). A telemonitoring intervention for cirrhotic ascites management is cost-saving. Digestive Diseases and Sciences, 67(3):854–862.

Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons.

BNDES. (2017). Internet das Coisas: um plano de ação para o Brasil - Relatório de Aprofundamento de Verticais – Saúde. [link].

BNDES. (2018). Plano de Ação do Estudo de Internet das Coisas. Produto 9a : Relatório Final do Estudo. [link].

Boechat, Y. E. M., Dal Bello, J. C. R., Fernandes, N. C. e Moreira, T. B. (2017). Telessaúde: a assistência remota ao idoso por consulta on line on time através da holografia, uma inovação na medicina. Em IX Congresso de Geriatria e Gerontologia do Estado do Rio de Janeiro - GeriatRio 2017.

Bonassa, E. M. A. e Gato, M. I. R. (2012). Terapêutica oncológica para enfermeiros e farmacêuticos. Em Terapêutica oncológica para enfermeiros e farmacêuticos, p. 644–644.

Boukhennoufa, I., Zhai, X., Utti, V., Jackson, J. e McDonald-Maier, K. D. (2022). Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomedical Signal Processing and Control, 71:103197.

Brasil (2007). Portaria 35º/2007. Diário Oficial União.

Brasil (2022). Resolução nº 2.314/2002. Diário Oficial União.

Brasil. (2019). DECRETO No 9.854. D.O.U. DE 26/06/2019, P. 10. https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2019/decreto/d9854.html

Brito, T. D. d. L. V., de Lima Lopes, P. R., Haddad, A. E., Messina, L. A. e Pisa, I. T. (2016). Análise da colaboração nos grupos de interesse especial da rede universitária de telemedicina (rute). Journal of Health Informatics, 8(1).

Byun, J.-W., Bertino, E. e Li, N. (2005). Purpose based access control of complex data for privacy protection. Em Proceedings of the Tenth ACM Symposium on Access Control Models and Technologies, SACMAT ’05, p. 102–110, New York, NY, USA. Association for Computing Machinery.

Caballol, N., Bayés, À., Prats, A., Martín-Baranera, M. e Quispe, P. (2023). Feasibility of a wearable inertial sensor to assess motor complications and treatment in parkinson’s disease. Plos one, 18(2):e0279910.

Cabrini, F. H., De Barros Castro Filho, A., Filho, F. V., Kofuji, S. T., & Moura, A. R. L. P. (2019). Helix SandBox: An open platform to fast prototype smart environments applications. Proceedings of the 2019 IEEE 1st Sustainable Cities Latin America Conference, SCLA 2019, 1–6. https://doi.org/10.1109/SCLA.2019.8905583

Cachin, C. e Vukolic, M. (2017). Blockchain Consensus Protocols in the Wild (Keynote Talk). Em Richa, A. W., editor, 31st International Symposium on Distributed Computing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics (LIPIcs), p. 1:1–1:16, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Cardenas, J., Gutierrez, C. A. e Aguilar-Ponce, R. (2020). Effects of antenna orientation in fall detection systems based on wifi signals. Em 2020 IEEE Latin-American Conference on Communications (LATINCOM), p. 1–6.

Carrara, G. R., Burle, L. M., Medeiros, D. S. V., de Albuquerque, C. V. N. e Mattos, D. M. F. (2020). Consistency, availability, and partition tolerance in blockchain: a survey on the consensus mechanism over peer-to-peer networking. Annals of Telecommunications, 75(3):163–174.

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., & Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. International Journal of Biosensors & Bioelectronics, 4(4), 195. https://doi.org/10.15406/IJBSBE.2018.04.00125

Cateb, G. F., Amaral, S., Gonçalves, S. C., Oliveira, I. J., Prates, R. O., Chagas, B. A., Marcolino, M. S. e Reis, Z. S. (2021). Estudo piloto de validação de um chatbot de rastreamento, implementado para direcionar a teleassistência em covid-19. Em Anais Estendidos do XXI Simpósio Brasileiro de Computação Aplicada à Saúde, p. 97–102. SBC.

Cetic.br (2020). Pesquisa sobre o uso das tecnologias de informação e comunicação nos estabelecimentos de saúde brasileiros : TIC Saúde 2019. Núcleo de Informação e Coordenação do Ponto BR (NIC.br).

Chagas, B. A., Ferreguetti, K., Ferreira, T. C., Prates, R. O., Ribeiro, L. B., Pagano, A. S., Reis, Z. S. e Meira Jr, W. (2021). Chatbot as a telehealth intervention strategy in the covid-19 pandemic: lessons learned from an action research approach. Latin-American Center for Informatics Studies Eletronic Journal.

Chalabianloo, N., Said, Y., Umair, M., & Sas, C. (2022). Application level performance evaluation of wearable devices for stress classification with explainable AI. Pervasive and Mobile Computing, 87, 101703. https://doi.org/10.1016/j.pmcj.2022.101703

Charpentier, G., Benhamou, P.-Y., Dardari, D., Clergeot, A., Franc, S., Schaepelynck-Belicar, P., Catargi, B., Melki, V., Chaillous, L., Farret, A. et al. (2011). The diabeo software enabling individualized insulin dose adjustments combined with telemedicine support improves hba1c in poorly controlled type 1 diabetic patients: a 6-month, randomized, open-label, parallel-group, multicenter trial (telediab 1 study). Diabetes care, 34(3):533–539.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. (2019). This looks like that: deep learning for interpretable image recognition. Advances in neural information processing systems, 32.

Chén, O. Y. e Roberts, B. (2021). Personalized health care and public health in the digital age. Frontiers in Digital Health, 3.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1800–1807.

Choudhury, T., Katal, A., Um, J.-S., Rana, A. e Al-Akaidi, M. (2022). Telemedicine: The Computer Transformation of Healthcare. Springer Nature.

Chowdhury, M. J. M., Ferdous, M. S., Biswas, K., Chowdhury, N., Kayes, A., Alazab, M. e Watters, P. (2019). A comparative analysis of distributed ledger technology platforms. IEEE Access, 7:167930–167943.

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing, 307:72–77.

Christidis, K. e Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. IEEE Access, 4:2292–2303.

Chu, J. N., Kaplan, C., Lee, J. S., Livaudais-Toman, J. e Karliner, L. (2022). Increasing telehealth access to care for older adults during the COVID-19 pandemic at an academic medical center: Video Visits for Elders Project (VVEP). The Joint Commission Journal on Quality and Patient Safety, 48(3):173–179.

Cieslak, F. A. M. (2021). Análise do protocolo 6LowPAN/RPL para simulação de redes de sensores voltadas sem fio voltadas ao IoT Healthcare utilizando o COOJA/Contiki [Araranguá, SC]. https://repositorio.ufsc.br/handle/123456789/228721

Cocian, L. F. E., Morales, A. S., & Schneider, I. J. C. (2023). Internet of Things as support to reduce hospital errors related to medication administration. Research, Society and Development, 12(3), e6312340425–e6312340425. https://doi.org/10.33448/RSD-V12I3.40425

Colón, L. N. V., DeLaHoz, Y. e Labrador, M. (2014). Human fall detection with smartphones. Em 2014 IEEE Latin-America Conference on Communications (LATINCOM), p. 1–7.

Conselho Federal de Medicina (2022). Resolução cfm nº 2.314/2022. Acesso em: 03 04 2023.

Cordeiro, B. M. de O. S. (2022). Redes IoT Baseadas em SDN e Dirigidas por Intenções [Universidade Federal de Goiás (UFG)]. [link].

Craig, J. e Patterson, V. (2005). Introduction to the practice of telemedicine. Journal of telemedicine and telecare, 11:3–9.

da Silva, L. N., da Silva, L. F., Goes, F. G. B., Machado, M. E. D. e Paiva, E. D. (2015). Orientações sobre quimioterapia junto à criança com câncer: método criativo sensível. Online Brazilian Journal of Nursing, 14(4):471–480.

Dagher, G. G., Mohler, J., Milojkovic, M. e Marella, P. B. (2018). Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustainable cities and society, 39:283–297.

Dang, L., Dong, M., Ota, K., Wu, J., Li, J. e Li, G. (2018). Resourceefficient secure data sharing for information centric e-health system using fog computing. Em 2018 IEEE International Conference on Communications (ICC), p. 1–6. IEEE.

Daraghmi, E.-Y., Daraghmi, Y.-A. e Yuan, S.-M. (2019). Med-Chain: a design of blockchain-based system for medical records access and permissions management. IEEE Access, 7:164595–164613.

Darkins, A., Ryan, P., Kobb, R., Foster, L., Edmonson, E., Wakefield, B. e Lancaster, A. E. (2008). Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemedicine and e-Health, 14(10):1118–1126.

Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanamahatana, C. A., Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., and Hexagon-ML (2018). The ucr time series classification archive. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

De Aguiar, E. J., Faiçal, B. S., Krishnamachari, B. e Ueyama, J. (2020). A survey of blockchain-based strategies for healthcare. ACM Comput. Surv., 53(2).

de Campos Filho, A. S., Cursino, J. R. V., do Nascimento, J. W. A., de Souza, R. R., Roque, G. d. S. L. e de Souza Cavalcanti, A. R. (2022). Content and usability validation of an intelligent virtual conversation assistant used for virtual triage during the covid-19 pandemic in brazil. CIN: Computers, Informatics, Nursing, 40(11):779–785.

de Medeiros, D. S. V., Mattos, D. M. F., Fernandes, N. C., de Aragão Rocha, A. A., de Albuquerque, C. V. N. e Muchaluat-Saade, D. C. (2022). Challenges and future work directions in e-healthcare using blockchain technology, p. 211–249. Healthcare Technologies. Institution of Engineering and Technology.

de Oliveira, M. T., Reis, L. H., Carrano, R. C., Seixas, F. L., Saade, D. C., Albuquerque, C. V., Fernandes, N. C., Olabarriaga, S. D., Medeiros, D. S. e Mattos, D. M. (2019). Towards a blockchain-based secure electronic medical record for healthcare applications. Em ICC 2019-2019 IEEE International Conference on Communications (ICC), p. 1–6. IEEE.

de Oliveira, M. T., Verginadis, Y., Reis, L. H., Psarra, E., Patiniotakis, I. e Olabarriaga, S. D. (2023). AC-ABAC: Attribute-based access control for electronic medical records during acute care. Expert Systems with Applications, 213:119271.

de Souza Filho, E., Fernandes, F., Wiefels, C., de Carvalho, L., Dos Santos, T., Dos Santos, A., Mesquita, E., Seixas, F., Chow, B., Mesquita, C. e Gismondi, R. (2021). Machine learning algorithms to distinguish myocardial perfusion spect polar maps. Frontiers in Cardiovascular Medicine, 8:741667.

Debnath, P., Mahmud, A., Hossain, A. K. e Rahman, S. (2023). Design and application of iot-based real-time patient telemonitoring system using biomedical sensor network. SN Computer Science, 4(2):1–23.

Deng, H., Runger, G., Tuv, E., and Vladimir, M. (2013). A time series forest for classification and feature extraction. Information Sciences, 239:142–153.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee.

Deo, R. C. (2015). Machine Learning in Medicine HHS Public Access. Circulation, 132(20), 1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

Devi, D. H., Duraisamy, K., Armghan, A., Alsharari, M., Aliqab, K., Sorathiya, V., Das, S., & Rashid, N. (2023). 5G Technology in Healthcare and Wearable Devices: A Review. Sensors 2023, Vol. 23, Page 2519, 23(5), 2519. https://doi.org/10.3390/S23052519

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

DICOM, D. S. C. (2023). Dicom ps3.1 2023b. Relatório técnico, DICOM Standards Committee.

Dinh, A., Tseng, E., Yin, A. L., Estrin, D., Greenwald, P. e Fortenko, A. (2023). Perceptions about augmented reality in remote medical care: Interview study of emergency telemedicine providers. JMIR Formative Research, 7:e45211.

Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M. e Wang, F. (2017). Secure and trustable electronic medical records sharing using blockchain. Em AMIA annual symposium proceedings, volume 2017, p. 650. American Medical Informatics Association.

Dundas, J. and Chik, D. (2011). Implementing human-like intuition mechanism in artificial intelligence. arXiv preprint arXiv:1106.5917.

Dunn, J., Runge, R., & Snyder, M. (2018). Wearables and the medical revolution. Personalized Medicine, 15(5), 429–448. https://doi.org/10.2217/pme-2018-0044

Durak, L. and Arikan, O. (2003). Short-time fourier transform: two fundamental properties and an optimal implementation. IEEE Transactions on Signal Processing, 51(5):1231–1242.

Ebihara, Y., Oki, E., Hirano, S., Takano, H., Ota, M., Morohashi, H., Hakamada, K., Urushidani, S. e Mori, M. (2022). Tele-assessment of bandwidth limitation for remote robotics surgery. Surgery today, 52(11):1653–1659.

Ebrahimi, Z., Loni, M., Daneshtalab, M., and Gharehbaghi, A. (2020). A review on deep learning methods for ecg arrhythmia classification. Expert Systems with Applications: X, 7:100033.

El Maachi, I., Bilodeau, G.-A., and Bouachir, W. (2020). Deep 1d-convnet for accurate parkinson disease detection and severity prediction from gait. Expert Systems with Applications, 143:113075.

El-Hajj, C. and Kyriacou, P. A. (2020). A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomedical Signal Processing and Control, 58:101870.

Engelhardt, M. A. (2017). Hitching healthcare to the chain: An introduction to blockchain technology in the healthcare sector. Technology Innovation Management Review, 7(10).

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341(3):1.

Espinoza, J., Crown, K., Kulkarni, O. et al. (2020). A guide to chatbots for covid-19 screening at pediatric health care facilities. JMIR public health and surveillance, 6(2):e18808.

Faceli, K., Lorena, A. C., Gama, J., Almeida, T. A., and Carvalho, A. C. P. L. F. (2020). Inteligência Artificial–uma abordagem de aprendizado de máquina. Rio de Janeiro: LTC, 2 edition.

Fahmy, H. M. A. (2020). Concepts, applications, experimentation and analysis of wireless sensor networks. Springer Nature.

Fan, K., Wang, S., Ren, Y., Li, H. e Yang, Y. (2018). MedBlock: Efficient and secure medical data sharing via blockchain. Journal of medical systems, 42:1–11.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963.

Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller, P.-A., and Petitjean, F. (2020). InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery, 34(6):1936–1962.

Fernandes, M. S. (2022). Inteligência Artificial Explicável aplicada a Aprendizado de Máquina: Um estudo para Identificar Estresse Ocupacional em Profissionais da Saúde. Universidade Federal de Santa Catarina. Disponível em: https://repositorio.ufsc.br/handle/123456789/243462 Acessado em: 19 de maio de 2023.

Ferreira, V. C., Caballero, E., Lima, R., Balbi, H., Seixas, F. L., Albuquerque, C. e Muchaluat-Saade, D. C. (2018). Redes corporais sem fio e suas aplicações em saúde. Em Anais da 37ª JAI – Jornadas de Atualização em Informática, chapter 4, p. 149–198. SBC, 1 ediÁ„o.

Fonseca, A. L. d. O., Fernandes, N. C., René Filho, P., Carrano, R. C. e Boechat, Y. E. (2018). Desenvolvendo uma solução de transmissão de mídias de baixo custo para o auxílio ao diagnóstico com imagens holográficas. Em Anais da VI Escola Regional de Computação aplicada à Saúde. SBC.

Foumani, N. M., Miller, L., Tan, C. W., Webb, G. I., Forestier, G., and Salehi, M. (2023). Deep learning for time series classification and extrinsic regression: A current survey. arXiv preprint arXiv:2302.02515.

Franco, G. A. S., Silva, L. F. d., Seixas, F. L., Góes, F. G. B., Pacheco, S. T. d. A. e Moraes, J. R. M. M. d. (2022). Quimio em casa: Aplicativo para familiares de crianças e adolescentes em uso de antineoplásicos orais. Texto & Contexto-Enfermagem, 31.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2):119 – 130.

Fulcher, B. D. and Jones, N. S. (2017). hctsa: A computational framework for automated time-series phenotyping using massive feature extraction. Cell systems, 5(5):527–531.

Furat, O., Kirstein, T., Leißner, T., Bachmann, K., Gutzmer, J., Peuker, U. A., and Schmidt, V. (2023). Multidimensional characterization of particle morphology and mineralogical composition using ct data and r-vine copulas.

Gagné, N. e Franzen, L. (2023). How to run behavioural experiments online: Best practice suggestions for cognitive psychology and neuroscience. Swiss Psychology Open, 3(1):5531.

Ganapathy, S., Chang, S. Y. S., Tan, J. M. C., Lim, C. e Ng, K. C. (2023). Acute paediatrics tele-support for caregivers in singapore: an initial experience with a prototype chatbot: Upal. Singapore Medical Journal, 64(5):335.

Gay, D., Bondu, A., Lemaire, V., and Boullé, M. (2021). Interpretable feature construction for time series extrinsic regression. In Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I, pages 804–816. Springer.

Ghorbel, A., Ghorbel, M. e Jmaiel, M. (2021). Accountable privacy preserving attribute-based access control for cloud services enforced using block-chain. International Journal of Information Security, p. 1–20.

Gilbert, C., Rahi, J., Eckstein, M., O’Sullivan, J. e Foster, A. (1997). Retinopathy of prematurity in middle-income countries. The Lancet, 350(9070):12–14.

Gillis, J., Calyam, P., Apperson, O. e Ahmad, S. (2016). Panacea’s cloud: Augmented reality for mass casualty disaster incident triage and co-ordination. Em 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), p. 264–265.

Golledge, J., Fernando, M., Lazzarini, P., Najafi, B., & Armstrong, D. G. (2020). The Potential Role of Sensors, Wearables and Telehealth in the Remote Management of Diabetes-Related Foot Disease. Sensors, 20(4527), 1–15. https://doi.org/10.3390/s20164527

Gomes, J. and Velho, L. (1997). Image processing for computer graphics. Springer Science & Business Media.

Gonzalez, G., Balakuntala, M., Agarwal, M., Low, T., Knoth, B., Kirkpatrick, A. W., McKee, J., Hager, G., Aggarwal, V., Xue, Y., Voyles, R. e Wachs, J. (2023). Asap: A semi-autonomous precise system for telesurgery during communication delays. IEEE Transactions on Medical Robotics and Bionics, 5(1):66–78.

Gonzalez, R. C., Woods, R. E., et al. (2002). Digital image processing.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. (2017). Making the v in vqa matter: Elevating the role of image understanding in visual question answering.

Gralha, S. R., Fleig, T., Dihl, F. V., Morales, A. S., & Cazella, S. C. (2022). Tecnologias de IoT na área da saúde para idosos: um mapeamento sistemático. Research, Society and Development, 11(7), e49111730453. https://doi.org/10.33448/rsd-v11i7.30453

Grazioli, S., Crippa, A., Rosi, E., Candelieri, A., Ceccarelli, S. B., Mauri, M., Manzoni, M., Mauri, V., Trabattoni, S., Molteni, M. et al. (2023). Exploring telediagnostic procedures in child neuropsychiatry: addressing adhd diagnosis and autism symptoms through supervised machine learning. European child & adolescent psychiatry, p. 1–11.

Guijo-Rubio, D., Middlehurst, M., Arcencio, G., Silva, D. F., and Bagnall, A. (2023). Unsupervised feature based algorithms for time series extrinsic regression. arXiv preprint arXiv:2305.01429.

Guo, R., Shi, H., Zhao, Q. e Zheng, D. (2018). Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems. IEEE access, 6:11676–11686.

Guo, Z., Chen, Q., Wu, G., Xu, Y., Shibasaki, R., and Shao, X. (2017). Village building identification based on ensemble convolutional neural networks. Sensors, 17:2487.

Gupta, A., Harrison, P., Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., Solorzano, L., Suveer, A., Klemm, A., Spjuth, O., Sintorn, I.-M., and Wählby, C. (2018). Deep learning in image cytometry: A review. Cytometry Part A, 95.

Gupta, R., Tanwar, S., Tyagi, S. e Kumar, N. (2019). Tactile-internetbased telesurgery system for healthcare 4.0: An architecture, research challenges, and future directions. IEEE Network, 33(6):22–29.

Gutman, D., Codella, N. C. F., Celebi, M. E., Helba, B., Marchetti, M. A., Mishra, N. K., and Halpern, A. (2016). Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv.

Haas, S., Wohlgemuth, S., Echizen, I., Sonehara, N. e Müller, G. (2011). Aspects of privacy for electronic health records. International Journal of Medical Informatics, 80(2):e26–e31. Special Issue: Security in Health Information Systems.

Habibzadeh, H., Dinesh, K., Rajabi Shishvan, O., Boggio-Dandry, A., Sharma, G., & Soyata, T. (2020). A Survey of Healthcare Internet of Things (HIoT): A Clinical Perspective. IEEE Internet of Things Journal, 7(1), 53–71. https://doi.org/10.1109/JIOT.2019.2946359

Habibzadeh, H., Soyata, T., Kantarci, B., Boukerche, A., & Kaptan, C. (2018). Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks, 144, 163–200. https://doi.org/10.1016/j.comnet.2018.08.001

Hachilif, R., Baghdadi, R., and Benhamida, F. (2019). Graduation Thesis Implementing and Optimizing Neural Networks using Tiramisu. PhD thesis.

Harrison, J. E., Weber, S., Jakob, R. e Chute, C. G. (2021). ICD-11: an international classification of diseases for the twenty-first century. BMC Medical Informatics and Decision Making, 21(6).

Haykin, S. (2007). Redes neurais: princípios e prática. Bookman Editora.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778. IEEE Computer Society.

Healthcare Information and Management Systems Society (HIMSS) (2020). Roundup: Tech’s role in tracking, testing, treating COVID-19. [link]. Acessado em Junho de 2023.

Hernandez, S. D., DeLaHoz, Y. e Labrador, M. (2014). Dynamic background subtraction for fall detection system using a 2d camera. Em 2014 IEEE Latin-America Conference on Communications (LATINCOM), p. 1–6.

Herrmann, M., Tan, C. W., Salehi, M., and Webb, G. I. (2023). Proximity forest 2.0: A new effective and scalable similarity-based classifier for time series.

HL7, H. L. S. I. (2015). Hl7 implementation guide for cda® release 2: Consolidated cda templates for clinical notes (us realm) draft standard for trial use release 2.1. Relatório técnico, Health Level Seven International.

Ho, J. Y. e Hendi, A. S. (2018). Recent trends in life expectancy across high income countries: retrospective observational study. BMJ, 362.

Hong, S., Zhou, Y., Shang, J., Xiao, C., and Sun, J. (2020). Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in biology and medicine, 122:103801.

Hou, B.-J. and Zhou, Z.-H. (2018). Learning with interpretable structure from rnn. arXiv preprint arXiv:1810.10708.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–7141.

Hu, Y., Ji, C., Zhang, Q., Chen, L., Zhan, P., and Li, X. (2019). A novel multi-resolution representation for time series sensor data analysis. Soft Computing, pages 1–26.

Huang, G., Liu, Z., v. d. Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269.

Hurst, W., Tekinerdogan, B., Alskaif, T., Boddy, A. e Shone, N. (2022). Securing electronic health records against insider-threats: A supervised machine learning approach. Smart Health, 26:100354.

Islam, M. M., & Bhuiyan, Z. A. (2023). An Integrated Scalable Framework for Cloud and IoT based Green Healthcare System. IEEE Access, 11(March), 22266–22282. https://doi.org/10.1109/ACCESS.2023.3250849

ITU (Ed.). (2012). Recommendation ITU-T Y.2060: An overview of internet of things. In SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS Next Generation Networks – Frameworks and functional architecture models (pp. 1–22). International Telecommunication Union (ITU).

ITU. (2014). Recommendation ITU-T Y.2066 Common requirements of the Internet of things. In ITU (Ed.), SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS. Next Generation Networks – Frameworks and functional architecture models (ITU, p. 32). ITU. http://handle.itu.int/11.1002/1000/12169

ITU. (2019). Recommendation ITU-T Y.4460: Architectural reference models of devices for Internet of things applications. In ITU (Ed.), GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES GLOBAL (ITU, pp. 1–26). International Telecommunication Union (ITU). http://handle.itu.int/11.1002/1000/11830-en

Iuchno, C. W. e De Carvalho, G. P. (2019). Toxicidade e efeitos adversos decorrente do tratamento quimioterápico antineoplásico em pacientes pediátricos: revisão integrativa. Ciência & Saúde, 12(1):e30329–e30329.

Iyer, R., Nedeljkovic, M. e Meyer, D. (2022). Using voice biomarkers to classify suicide risk in adult telehealth callers: Retrospective observational study. JMIR Ment Health, 9(8):e39807.

Jackson-Triche, M. e Mangurian, C. (2022). A covid-19 rapid mental health response for medical center health care workers. Psychiatric Services, 73(8):958–959.

Jackson-Triche, M., Vetal, D., Turner, E.-M., Dahiya, P. e Mangurian, C. (2023). Meeting the behavioral health needs of health care workers during covid-19 by leveraging chatbot technology. Journal of medical Internet research.

Jacquemard, T., Doherty, C. P. e Fitzsimons, M. B. (2020). Examination and diagnosis of electronic patient records and their associated ethics: a scoping literature review. BMC Medical Ethics, 21(1):76.

Janett, R. S. e Yeracaris, P. P. (2020). Electronic medical records in the american health system: challenges and lessons learned. Ciencia & saude coletiva, 25:1293–1304.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14, pages 675–678.

Jiang, S., Cao, J., Wu, H., Yang, Y., Ma, M. e He, J. (2018). Blochie: a blockchain-based platform for healthcare information exchange. Em 2018 ieee international conference on smart computing (smartcomp), p. 49–56. IEEE.

John, O., Sarbadhikari, S. N., Prabhu, T., Goel, A., Thomas, A., Shroff, S., Allaudin, F., Weerabaddana, C., Alhuwail, D., Koirala, U., Johnrose, J., Codyre, P., Bleaden, A., Singh, S. e Bajaj, S. (2022). Implementation and experiences of telehealth: Balancing policies with practice in countries of south asia, kuwait, and the european union. Interact J Med Res, 11(1):e30755.

Kakhi, K., Alizadehsani, R., Kabir, H. M. D., Khosravi, A., Nahavandi, S., & Acharya, U. R. (2022). The internet of medical things and artificial intelligence: trends, challenges, and opportunities. Biocybernetics and Biomedical Engineering, 42(3), 749–771. https://doi.org/10.1016/J.BBE.2022.05.008

Kashani, A. and Barold, S. S. (2005). Significance of qrs complex duration in patients with heart failure. Journal of the American College of Cardiology, 46(12):2183–2192.

Kashyap, V., Kumar, A., Kumar, A., & Hu, Y. C. (2022). A Systematic Survey on Fog and IoT Driven Healthcare: Open Challenges and Research Issues. Electronics (Switzerland), 11(17), 1–25. https://doi.org/10.3390/electronics11172668

Kaur, G. e Gandhi, C. (2020). Scalability in blockchain: Challenges and solutions. Em Handbook of Research on Blockchain Technology, p. 373–406. Elsevier.

Kim, Y. J., DeLisa, J. A., Chung, Y.-C., Shapiro, N. L., Kolar Rajanna, S. K., Barbour, E., Loeb, J. A., Turner, J., Daley, S., Skowlund, J. e Krishnan, J. A. (2021). Recruitment in a research study via chatbot versus telephone outreach: a randomized trial at a minority-serving institution. Journal of the American Medical Informatics Association, 29(1):149–154.

Kobeissi, M. M. e Ruppert, S. D. (2022). Remote patient triage: Shifting toward safer telehealth practice. Journal of the American Association of Nurse Practitioners, 34(3):444.

Köppen, M. (2000). The curse of dimensionality. In World Conference on Soft Computing in Industrial Applications, volume 1, pages 4–8.

Koydemir, H. C., & Ozcan, A. (2018). Wearable and Implantable Sensors for Biomedical Applications. Annual Review of Analytical Chemistry, 11, 127–146. https://doi.org/10.1146/annurev-anchem-061417-125956

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011). Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82.

Lalonde, F. (2012). Guidelines for cardiac rehabilitation and secondary prevention programs. Journal of Osteopathic Medicine, 112(11):753–754.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1):159–174.

Lapuschkin, S., Binder, A., Montavon, G., Muller, K.-R., and Samek, W. (2016). Analyzing classifiers: Fisher vectors and deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2912–2920.

Larrucea, X., Moffie, M., Asaf, S. e Santamaria, I. (2020). Towards a GDPR compliant way to secure european cross border healthcare industry 4.0. Computer Standards and Interfaces, 69:103408.

Latifi, R., Doarn, C. R. e Merrell, R. C. (2020). Telemedicine, telehealth and telepresence: Principles, strategies, applications, and new directions. Springer Nature.

Lau, D. e McAlister, F. A. (2021). Implications of the COVID-19 pandemic for cardiovascular disease and risk-factor management. Canadian Journal of Cardiology, 37(5):722–732.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradientbased learning applied to document recognition. In Proceedings of the IEEE, pages 2278–2324.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., Yeom, I., Chung, M. L., Kim, Y., Yoo, S., and Kim, E. (2022). Use of mobile apps for self-care in people with parkinson disease: systematic review. JMIR mHealth and uHealth, 10(1):e33944.

Lee, T.-F., Chang, I.-P. e Kung, T.-S. (2021). Blockchain-based healthcare information preservation using extended chaotic maps for HIPAAprivacy/security regulations. Applied Sciences, 11(22).

Lesk, M. (2013). Electronic medical records: Confidentiality, care, and epidemiology. IEEE security & privacy, 11(6):19–24.

Letchumanan, I., Gopinath, S. C. B., Md Arshad, M. K., Mohamed Saheed, M. S., Perumal, V., Voon, C. H. e Hashim, U. (2020). Goldnanohybrid biosensors for analyzing blood circulating clinical biomacromolecules: Current trend toward future remote digital monitoring. Critical Reviews in Analytical Chemistry, p. 1–16.

Li, J., Monroe, W., and Jurafsky, D. (2016). Understanding neural networks through representation erasure. arXiv preprint arXiv:1612.08220.

Li, J., Monroe, W., and Jurafsky, D. (2017). Understanding neural networks through representation erasure.

Liang, X., Zhao, J., Shetty, S., Liu, J. e Li, D. (2017). Integrating blockchain for data sharing and collaboration in mobile healthcare applications. Em 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), p. 1–5. IEEE.

Lin, G. e Lue, T. F. (2023). Revolutionizing laparoscopic telesurgery: The emergence of 5g-assisted wireless endoscopy systems. Current Urology, 17(2):82–83.

Lines, J. and Bagnall, A. (2015). Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29(3):565–592.

Lines, J., Taylor, S., and Bagnall, A. (2018). Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles. ACM Transactions on Knowledge Discovery from Data, 12(5):1–35.

Lisboa, K. O., Hajjar, A. C., Sarmento, I. P., Sarmento, R. P. e Gonçalves, S. H. R. (2023). A história da telemedicina no brasil: desafios e vantagens. Saúde e Sociedade, 32.

Lo, S. K., Xu, X., Chiam, Y. K. e Lu, Q. (2017). Evaluating suitability of applying blockchain. Em 2017 22nd international conference on engineering of complex computer systems (ICECCS), p. 158–161. IEEE.

López-Azor, J. C., de la Torre, N., Carmena, M. D. G.-C., Pérez, P. C., Munera, C., MarcoClement, I., León, R. C., Álvarez-García, J., Pachón, M., Ynsaurriaga, F. A. et al. (2022). Clinical utility of heartlogic, a multiparametric telemonitoring system, in heart failure. Cardiac Failure Review, 8.

Lu, T., Ji, S., Jin, W., Yang, Q., Luo, Q., & Ren, T. (2023). Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors (Basel, Switzerland), 23(6), 2991(1-37).

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., and Jones, N. S. (2019). catch22: Canonical time-series characteristics: Selected through highly comparative time-series analysis. Data Mining and Knowledge Discovery, 33(6):1821–1852.

Lucas, B., Shifaz, A., Pelletier, C., O’Neill, L., Zaidi, N., Goethals, B., Petitjean, F., and Webb, G. I. (2019). Proximity forest: an effective and scalable distance-based classifier for time series. Data Mining and Knowledge Discovery, 33(3):607–635.

Luh, F. e Yen, Y. (2020). Cybersecurity in science and medicine: Threats and challenges. Trends in Biotechnology, 38(8):825–828.

Lundberg, S. and Lee, S.-I. (2017). A unified approach to interpreting model predictions.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.

Maani, R., Camorlinga, S. e Arnason, N. (2011). A parallel method to improve medical image transmission. Journal of Digital Imaging, 25(1):101–109.

Maesa, D. D. F., Mori, P. e Ricci, L. (2019). A blockchain based approach for the definition of auditable access control systems. Computers & Security, 84:93–119.

Makary, M. A. e Daniel, M. (2016). Medical error—the third leading cause of death in the US. Bmj, 353.

Maldonado, J. M. S. d. V., Marques, A. B. e Cruz, A. (2016). Telemedicina: desafios à sua difusão no brasil. Cadernos de Saúde Pública, 32.

Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S. E. e Smith, M. K. (2001). Transatlantic robot-assisted telesurgery. Nature, 413(6854):379–380.

Maria, S., Mentis, H. M., Canlorbe, G. e Avellino, I. (2023). Supporting collaborative discussions in surgical teleconsulting through augmented reality head mounted displays. Em Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, p. 1–13.

Marques, G., Miranda, N., Bhoi, A. K., Garcia-zapirain, B., Hamrioui, S., & Díez, I. de la T. (2020). Internet of things and enhanced living environments: Measuring and mapping air quality using cyber-physical systems and mobile computing technologies. Sensors (Switzerland), 20(3), 1–20. https://doi.org/10.3390/s20030720

Marques, G., Pitarma, R., Garcia, N. M., & Pombo, N. (2019). Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: A review. Electronics (Switzerland), 8(10), 1–27. https://doi.org/10.3390/electronics8101081

Marques, G., Saini, J., Dutta, M., Singh, P. K., & Hong, W. C. (2020). Indoor air quality monitoring systems for enhanced living environments: A review toward sustainable smart cities. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/SU12104024

Martinez-Ríos, E., Montesinos, L., and Alfaro-Ponce, M. (2022). A machine learning approach for hypertension detection based on photoplethysmography and clinical data. Computers in Biology and Medicine, 145:105479.

Massad, E., Marin, H. d. F. e Azevedo Neto, R. S. d., editors (2003). O prontuário eletrônico do paciente na assistência, informação e conhecimento médico. USP, São Paulo.

Mastaneh, Z. e Mouseli, A. (2020). Technology and its solutions in the era of covid-19 crisis: A review of literature. Evidence Based Health Policy, Management and Economics.

Mattos, D. M., Medeiros, D. S., Fernandes, N. C., de Oliveira, M. T., Carrara, G. R., Soares, A. A., Magalhães, L. C. S., Passos, D., Carrano, R. C., Moraes, I. M. et al. (2018). Blockchain para segurança em redes elétricas inteligentes: Aplicações, tendências e desafios. Sociedade Brasileira de Computação.

Mazzu-Nascimento, T., de Oliveira Leal, Â. M., Nogueira-de Almeida, C. A., de Avó, L. R. d. S., Carrilho, E., and Silva, D. F. (2020). Noninvasive self-monitoring of blood glucose at your fingertips, literally!: Smartphone-based photoplethysmography. International Journal of Nutrology, 13(02):048–052.

Mehta, V., Dhall, A., Pal, S. e Khan, S. S. (2021). Motion and region aware adversarial learning for fall detection with thermal imaging. Em 2020 25th International Conference on Pattern Recognition (ICPR), p. 6321–6328.

Mesquita, J. L., Arruda, C. A. M. e de Macêdo, A. F. (2018). Perfil dos pacientes em terapia antineoplásica oral em um centro oncológico. Cadernos ESP, 12(1):46–56.

Messina, L. A., Filho, J. L. R. e de Lima Lopes, P. R., editors (2014). RUTE 100 : as 100 primeiras unidades de telemedicina no Brasil e o impacto da Rede Universitária de Telemedicina (RUTE). E-papers, Rio de Janeiro.

Mettler, M. (2016). Blockchain technology in healthcare: The revolution starts here. Em 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom), p. 1–3. IEEE.

Middlehurst, M. and Bagnall, A. (2022). The freshprince: A simple transformation based pipeline time series classifier. In Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II, pages 150–161. Springer.

Middlehurst, M., Large, J., and Bagnall, A. (2020). The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE International Conference on Big Data (Big Data), pages 188–195.

Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., and Bagnall, A. (2021). Hive-cote 2.0: a new meta ensemble for time series classification. Machine Learning, 110(11-12):3211–3243.

Miller, A. C., Singh, I., Koehler, E. e Polgreen, P. M. (2018). A smartphone-driven thermometer application for real-time population-and individuallevel influenza surveillance. Clinical Infectious Diseases, 67(3):388–397.

Miller, M. J., Pak, S. S., Keller, D. R. e Barnes, D. E. (2021). Evaluation of pragmatic telehealth physical therapy implementation during the covid-19 pandemic. Physical therapy, 101(1):pzaa193.

Minh Dang, L., Piran, M. J., Han, D., Min, K., & Moon, H. (2019). A survey on internet of things and cloud computing for healthcare. Electronics (Switzerland), 8(7), 1–49. https://doi.org/10.3390/electronics8070768

Mitchell, T. M. (1997). Machine learning.

Morales, A. S., de Oliveira Ourique, F., Morás, L. D., & Cazella, S. C. (2022). Exploring Interpretable Machine Learning Methods and Biomarkers to Classifying Occupational Stress of the Health Workers. Intelligent Systems Reference Library, 121, 105–124. https://doi.org/10.1007/978-3-030-97516-6_6/COVER/

Morales, A. S., Ourique, F. de O., & Cazella, S. C. (2021). A Comprehensive Review on the Challenges for Intelligent Systems Related with Internet of Things for Medical Decision. Studies in Fuzziness and Soft Computing, 410, 221–240. https://doi.org/10.1007/978-3-030-70111-6_11

Morales, A. S.; Schneider, I. J. C. ; Ourique, F. O. ; Cazella, S. C. (in press). Roadmap to the elderly enhanced living and care environments: applications and challenges on the Internet of Things domain. Advances in Computers, Elsevier.

Morales, A., Barbosa, M., Morás, L., Cazella, S. C., Sgobbi, L. F., Sene, I., & Marques, G. (2022). Occupational Stress Monitoring Using Biomarkers and Smartwatches: A Systematic Review. Sensors 2022, Vol. 22, Page 6633, 22(17), 6633. https://doi.org/10.3390/S22176633

Morid, M. A., Sheng, O. R. L., and Dunbar, J. (2023). Time series prediction using deep learning methods in healthcare. ACM Transactions on Management Information Systems, 14(1):1–29.

Morse, K. E., Ostberg, N. P., Jones, V. G. e Chan, A. S. (2020). Use characteristics and triage acuity of a digital symptom checker in a large integrated health system: population-based descriptive study. Journal of medical Internet research, 22(11):e20549.

Muhammed, T., Mehmood, R., Albeshri, A., & Katib, I. (2018). UbeHealth: A personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access, 6, 32258–32285. https://doi.org/10.1109/ACCESS.2018.2846609

Murdoch, W. and Szlam, A. (2017). Automatic rule extraction from long short term memory networks, [in:] international conference on learning representations. Toulon, France, April, pages 23–26.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized business review, p. 21260.

Namasudra, S., Sharma, P., Crespo, R. G. e Shanmuganathan, V. (2022). Blockchain-based medical certificate generation and verification for IoTbased healthcare systems. IEEE Consumer Electronics Magazine.

Nasajpour, M., Pouriyeh, S., Parizi, R. M., Dorodchi, M., Valero, M., & Arabnia, H. R. (2020). Internet of Things for Current COVID-19 and Future Pandemics: an Exploratory Study. Journal of Healthcare Informatics Research, 4(4), 325–364. https://doi.org/10.1007/s41666-020-00080-6

Nazerian, F., Motameni, H. e Nematzadeh, H. (2019). Emergency role-based access control E-RBAC and analysis of model specifications with alloy. Journal of information security and applications, 45:131–142.

Nelson, C. R., Gabbard, J. L., Moats, J. B. e Mehta, R. K. (2022). User-centered design and evaluation of artts: an augmented reality triage tool suite for mass casualty incidents. Em 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), p. 336–345.

Neto, F. C., Milan, A. A., Fernandes, N. C. e Guimarães, A. G. (2023). Aplicações críticas habilitadas pela tecnologia 5g: Oportunidades, tendências e desafios. Em Minicursos do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, number 4, p. 1–50. SBC.

Nilson, E.A.F., Andrade R.C.S., Brito D.A., Oliveira M.L. (2018). Custos atribuíveis à obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018. Rev Panam Salud Publica. 2020;44:e32. https://doi.org/10.26633/RPSP.2020.32

Oguiza, I. (2022). tsai - a state-of-the-art deep learning library for time series and sequential data. Github.

Ohno-Machado, L., Bafna, V., Boxwala, A. A., Chapman, B. E., Chapman, W. W., Chaudhuri, K., Day, M. E., Farcas, C., Heintzman, N. D., Jiang, X., Kim, H., Kim, J., Matheny, M. E., Resnic, F. S., Vinterbo, S. A., e the iDASH team (2011). iDASH: integrating data for analysis, anonymization, and sharing. Journal of the American Medical Informatics Association, 19(2):196–201.

Oki, E., Ota, M., Nakanoko, T., Tanaka, Y., Toyota, S., Hu, Q., Nakaji, Y., Nakanishi, R., Ando, K., Kimura, Y. et al. (2023). Telesurgery and telesurgical support using a double-surgeon cockpit system allowing manipulation from two locations. Surgical Endoscopy, p. 1–8.

Omboni, S., Padwal, R. S., Alessa, T., Benczúr, B., Green, B. B., Hubbard, I., Kario, K., Khan, N. A., Konradi, A., Logan, A. G. et al. (2022). The worldwide impact of telemedicine during covid-19: current evidence and recommendations for the future. Connected health, 1:7.

OMS. (2015). Relatório Mundial de Envelhecimento e Saúde. [link]

Özbilgin, F., Kurnaz, Ç. e Aydın, E. (2023). Prediction of coronary artery disease using machine learning techniques with iris analysis. Diagnostics, 13(6):1081.

Pacheco, C. A. R. and Pereira, N. S. (2018). Deep learning conceitos e utilização nas diversas áreas do conhecimento. Revista Ada Lovelace, 2:34–49.

Pagano, C. G. M., de Campos Moreira, T., Sganzerla, D., Matzenbacher, A. M. F., Faria, A. G., Matturro, L., Cabral, F. C., Rucks Varvaki Rados, D., Decavata Szortyka, A., Falavigna, M., Vinadé Chagas, M. E., Harzheim, E., Gonçalves, M., Umpierre, R. e Lutz de Araujo, A. (2021). Teaming-up nurses with ophthalmologists to expand the reach of eye care in a middle-income country: Validation of health data acquisition by nursing staff in a telemedicine strategy. PLoS One, 16(11):e0260594.

Palumbo, A. (2022). Microsoft hololens 2 in medical and healthcare context: state of the art and future prospects. Sensors, 22(20):7709.

Park, C., Cho, Y., Harvey, J., Arnoldo, B. e Levi, B. (2022). Telehealth and burn care: From faxes to augmented reality. Bioengineering, 9(5).

Patel, V. (2019). A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health informatics journal, 25(4):1398–1411.

Peleg, M., Beimel, D., Dori, D. e Denekamp, Y. (2008). Situationbased access control: Privacy management via modeling of patient data access scenarios. Journal of Biomedical Informatics, 41(6):1028–1040.

Pereira, T., Tran, N., Gadhoumi, K., Pelter, M. M., Do, D. H., Lee, R. J., Colorado, R., Meisel, K., and Hu, X. (2020). Photoplethysmography based atrial fibrillation detection: a review. NPJ digital medicine, 3(1):3.

Perpetuini, D., Chiarelli, A. M., Cardone, D., Filippini, C., Rinella, S., Massimino, S., Bianco, F., Bucciarelli, V., Vinciguerra, V., Fallica, P., et al. (2021). Prediction of state anxiety by machine learning applied to photoplethysmography data. PeerJ, 9:e10448.

Perwej, Y., Akhtar, N., Neha Kulshrestha, & Mishra, P. (2022). A Methodical Analysis of Medical Internet of Things (MIoT) Security and Privacy in Current and Future Trends. Journal of Emerging Technologies and Innovative Research, 9(1), d346–d371. [link].

Pires, G., Lopes, A., Correia, P., Almeida, L., Oliveira, L., Panda, R., Jorge, D., Mendes, D., Dias, P., Gomes, N. e Pereira, T. (2022). Usability of a telehealth solution based on tv interaction for the elderly: the VITASENIOR-MT case study. Universal Access in the Information Society.

Prathiba, V. e Rema, M. (2011). Teleophthalmology: a model for eye care delivery in rural and underserved areas of india. International journal of family medicine, 2011.

Prieto-Avalos, G., Cruz-Ramos, N. A., Alor-Hernández, G., Sánchez-Cervantes, J. L., Rodríguez-Mazahua, L., & Guarneros-Nolasco, L. R. (2022). Wearable Devices for Physical Monitoring of Heart: A Review. Biosensors, 12(5), 1–31. https://doi.org/10.3390/bios12050292

Pustokhin, D. A., Pustokhina, I. V. e Shankar, K. (2021). Challenges and Future Work Directions in Healthcare Data Management Using Blockchain Technology, p. 253–267. Springer Singapore, Singapore.

Qadri, Y. A., Nauman, A., Zikria, Y. Bin, Vasilakos, A. V., & Kim, S. W. (2020). The Future of Healthcare Internet of Things: A Survey of Emerging Technologies. IEEE Communications Surveys & Tutorials, c, 1–1. https://doi.org/10.1109/comst.2020.2973314

Qazi, S., Tanveer, K., ElBahnasy, K. e Raza, K. (2019). Chapter 10 - from telediagnosis to teletreatment: The role of computational biology and bioinformatics in tele-based healthcare. Em D. Jude, H. e Balas, V. E., editors, Telemedicine Technologies, p. 153–169. Academic Press.

Quigley, P. A., Campbell, R. R., Bulat, T., Olney, R. L., Buerhaus, P. e Needleman, J. (2012). Incidence and cost of serious fall-related injuries in nursing homes. Clinical Nursing Research, 21(1):10–23.

Qureshi, H. N., Manalastas, M., Farooq, M. U. Bin, Imran, A., Liu, Y., & Kalaa, M. O. Al. (2023). 5G-Enabled Healthcare in Mobile Scenarios: Challenges and Implementation Considerations. IEEE Network. https://doi.org/10.1109/MNET.125.2200243

Rae Nelson, C., Conwell, J., Lally, S., Cohn, M., Tanous, K., Moats, J. e Gabbard, J. L. (2022). Exploring augmented reality triage tools to support mass casualty incidents. Em Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume 66, p. 1664–1666. SAGE Publications Sage CA: Los Angeles, CA.

Rahman, A., Hossain, M. S., Alrajeh, N. A. e Alsolami, F. (2021). Adversarial examples—security threats to COVID-19 deep learning systems in medical IoT devices. IEEE Internet of Things Journal, 8(12):9603–9610.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/NEJMra1814259

Ramalho, D., Constantino, P., Silva, H. P. D., Constante, M. e Sanches, J. (2022). An augmented teleconsultation platform for depressive disorders. IEEE Access, 10:130563–130571.

Ramzan, F., Khan, M. U., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., and Mehmood, Z. (2019). A deep learning approach for automated diagnosis and multi-class classification of alzheimer’s disease stages using resting-state fmri and residual neural networks. Journal of Medical Systems, 44.

Rayan, Z., Alfonse, M., & Salem, A. B. M. (2018). Machine Learning Approaches in Smart Health. Procedia Computer Science, 154(1985), 361–368. https://doi.org/10.1016/j.procs.2019.06.052

Rebello, G., Camilo, G., Silva, L., Souza, L., Guimarães, L., Alchieri, E., Greve, F. e Duarte, O. (2019). Correntes de blocos: Algoritmos de consenso e implementação na plataforma hyperledger fabric. Sociedade Brasileira de Computação.

Reid, V., Hurst, T. et al. (2020). Q&a: Why providence health wants you to use its covid-19 triage chatbot. Advisory Board: IT Forefront.

Restás, Á., Szalkai, I. e Óvári, G. (2021). Drone application for spraying disinfection liquid fighting against the covid-19 pandemic—examining drone-related parameters influencing effectiveness. Drones, 5(3):58.

Rezende, E. J. C., Melo, M. d. C. B. d., Tavares, E. C., Santos, A. d. F. d. e Souza, C. d. (2010). Ética e telessaúde: reflexões para uma prática segura. Revista Panamericana de Salud Pública, 28:58–65.

Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). "why should i trust you?"explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Modelagnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386.

RNP (2023) Relatório Técnico: Visão do Futuro da Saúde Digital. , Rede nacional de Pesquisa/RNP/Comitê Técnico de Prospecção em Saúde Digital (CT-SD). Org.: Moro , C.; Amaro, E. ; Branco , G.; Araujo , G. B.; Moura, L. A. ; Portilho, L.; Messina, L. A.; Espinola , M. M. G. ; Lopes, P. R. L. Disponível em : [link]. Acessado em : 08/04/2023

Robles Cuevas, M. A., López Martínez, I., López Domínguez, E., Hernández Velázquez, Y., Domínguez Isidro, S., Flores Frías, L. M., Pomares Hernández, S. E., Medina Nieto, M. A. e de la Calleja, J. (2022). Telemonitoring system oriented towards high-risk pregnant women. Em Healthcare, volume 10, p. 2484. Multidisciplinary Digital Publishing Institute.

Rodgers, M. M., Pai, V. M. e Conroy, R. S. (2015). Recent advances in wearable sensors for health monitoring. IEEE Sensors Journal, 15(6):3119–3126.

Rodríguez-Rodríguez, I., Rodríguez, J.V. , & Campo-Valera, M. (2023). Applications of the Internet of Medical Things to Type 1 Diabetes Mellitus, Electronics 12, no. 3: 756. https://doi.org/10.3390/electronics12030756

Romanholo, P. V. V., Razzino, C. A., Raymundo-Pereira, P. A., Prado, T. M., Machado, S. A. S., & Sgobbi, L. F. (2021). Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 185, 113242. https://doi.org/10.1016/J.BIOS.2021.113242

Romero, S. E., Guevara, N., Montoya, X. e Castaneda, B. (2023). Assessment of panoramic ultrasound reconstruction imaging using telemedicine equipment: a phantom experiment. Em 18th International Symposium on Medical Information Processing and Analysis, volume 12567, p. 269–276. SPIE.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597.

Rosa, C.M., Souza, P.A.R, Silva, J.M.(2020) Inovação em saúde e internet das coisas (IoT): Um panorama do desenvolvimento científico e tecnológico. Perspectivas em Ciência da Informação. N.25, número 3, p. 164-181. Disponível em: https://doi.org/10.1590/1981-5344/3885

Rouhani, S., Belchior, R., Cruz, R. S. e Deters, R. (2021). Distributed attribute-based access control system using permissioned blockchain. World Wide Web, p. 1–28.

Ruaro, R. L. e Rodriguez, D. P. (2017). O direito À proteÇÃo de dados pessoais na sociedade da informaÇÃo. Revista de Direito da Economia e dos Sistemas de Informação, 9(2):337–356.

Ruiz Estrada, M. A. (2020). The uses of drones in case of massive epidemics contagious diseases relief humanitarian aid: Wuhan-covid-19 crisis. Available at SSRN 3546547.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., and Bagnall, A. (2020). The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, pages 1–49.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252.

Russell, M. R., Rogers, R. L., Rosenthal, S. M. e Lee, J. Y. (2022). Increasing access to care for transgender/gender diverse youth using telehealth: A quality improvement project. Telemedicine and e-Health, 28(6):847–857.

Sadoughi, F., Behmanesh, A., & Sayfouri, N. (2020). Internet of things in medicine: A systematic mapping study. Journal of Biomedical Informatics, 103(January), 103383. https://doi.org/10.1016/j.jbi.2020.103383

Salari, N., Hosseinian-Far, A., Mohammadi, M., Ghasemi, H., Khazaie, H., Daneshkhah, A., and Ahmadi, A. (2022). Detection of sleep apnea using machine learning algorithms based on ecg signals: A comprehensive systematic review. Expert Systems with Applications, 187:115950.

Salim, M. M. e Park, J. H. (2023). Federated learning-based secure electronic health record sharing scheme in medical informatics. IEEE Journal of Biomedical and Health Informatics, 27(2):617–624.

Salman, O. H., Taha, Z., Alsabah, M. Q., Hussein, Y. S., Mohammed, A. S. e Aal-Nouman, M. (2021). A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Computer Methods and Programs in Biomedicine, 209:106357.

Sandgaard, J. eWishstar, S. (2018). Medchain white paper 2.1. Relatório técnico, MedChain White Paper 2.1.

Santos, A. C. N., Firmino, R. M., Soto, J. C. H., Medeiros, D. S. V., Mattos, D. M. F., Albuquerque, C. V. N., Seixas, F., Muchaluat-Saade, D. C. e Fernandes, N. C. (2020a). Aplicações em redes de sensores na área da saúde e gerenciamento de dados médicos: tecnologias em ascensão. Em Muchaluat-Saade, D. C. e Pita, R., editors, Livro de Minicursos SBCAS 2020, chapter 4, p. 1–50. SBC, 1 ediÁ„o.

Santos, A., Seixas, F. e Fernandes, N. (2022). Provendo um modelo automático de detecção de quedas baseado em rede adversária generativa para assistência de idosos. Em Anais do XXII Simpósio Brasileiro de Computação Aplicada à Saúde, p. 120–131, Porto Alegre, RS, Brasil. SBC.

Santos, S. d. L. V. d., Zara, A. L. d. S. A., Lucena, F. N. d., Ribeiro-Rotta, R. F., Braga, R. D., Amaral, R. G., Pedrosa, S. M. e Kudo, T. N. (2022). Rede Nacional de Dados em Saúde: o que precisamos saber? Cegraf UFG.

Santos, W. S., de Sousa Júnior, J. H., Soares, J. C. e Raasch, M. (2020b). Reflexões acerca do uso da telemedicina no brasil: oportunidade ou ameaça? Revista de Gestão em Sistemas de Saúde, 9(3):433–453.

Savage, R. (2014). Hl7 version 2.5.1, implementation guide for immunization messaging. Relatório técnico, Centers for Disease Control and Prevention.

Scalvini, S., Vitacca, M., Paletta, L., Giordano, A. e Balbi, B. (2004). Telemedicine: a new frontier for effective healthcare services. Monaldi Archives for chest disease, 61(4).

Scarpato, N., Pieroni, A., Di Nunzio, L., & Fallucchi, F. (2017). E-health-IoT universe: A review. International Journal on Advanced Science, Engineering and Information Technology, 7(6), 2328–2336. https://doi.org/10.18517/ijaseit.7.6.4467

Schäfer, P. (2015). The boss is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530.

Schäfer, P. and Högqvist, M. (2012). Sfa: a symbolic fourier approximation and index for similarity search in high dimensional datasets. In EDBT ’12: Proceedings of the 15th International Conference on Extending Database Technology, pages 516–527.

Schieltz, K. M., O’Brien, M. J., Tsami, L., Call, N. A. e Lerman, D. C. (2022). Behavioral assessment and treatment via telehealth for children with autism: From local to global clinical applications. International Journal of Environmental Research and Public Health, 19(4).

Seixas, F., Chermont, S., Marchese, L., Cruz, F. e Cruz, D. (2021). Monitoramento remoto da adesão dos pacientes em tratamento aos exercícios cardiorrespiratórios. Catálogo de Tecnologias Sociais 2021, UFF.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradientbased localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626.

Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., & Seneviratne, A. (2017). A Survey of Wearable Devices and Challenges. IEEE Communications Surveys and Tutorials, 19(4), 2573–2620. https://doi.org/10.1109/COMST.2017.2731979

Seol, K., Kim, Y.-G., Lee, E., Seo, Y.-D. e Baik, D.-K. (2018). Privacy-preserving attribute-based access control model for XML-based electronic health record system. IEEE Access, 6:9114–9128.

Serhani, M. A., El Kassabi, H. T., Ismail, H., & Navaz, A. N. (2020). ECG monitoring systems: Review, architecture, processes, and key challenges. Sensors (Switzerland), 20(6). https://doi.org/10.3390/s20061796

Seron, P., Oliveros, M.-J., Gutierrez-Arias, R., Fuentes-Aspe, R., Torres-Castro, R. C., Merino-Osorio, C., Nahuelhual, P., Inostroza, J., Jalil, Y., Solano, R. et al. (2021). Effectiveness of telerehabilitation in physical therapy: a rapid overview. Physical therapy, 101(6):pzab053.

Shaees, S., Naeem, M. R., Naeem, H., Syed, H., Arslan, M., and Aldabbas, H. (2020). Facial emotion recognition using transfer learning.

Shah, P. K., Prabhu, V., Karandikar, S. S., Ranjan, R., Narendran, V. e Kalpana, N. (2016). Retinopathy of prematurity: Past, present and future. World journal of clinical pediatrics, 5(1):35.

Shetty, A., Kaur, S., & HJ, Y. (2023). Future Well-Being with Digital Health Technologies. Journal Healthcare Treatment Development, 31, 1–8. https://doi.org/10.55529/jhtd.31.1.8

Shoemaker, M. J., Dias, K. J., Lefebvre, K. M., Heick, J. D. e Collins, S. M. (2020). Physical therapist clinical practice guideline for the management of individuals with heart failure. Physical therapy, 100(1):14–43.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):60.

Siddiqi, A. e Piuzzi, N. S. (2021). Value-based healthcare: Not going anywhere—why orthopaedic surgeons will continue using telehealth in a postcovid-19 world. Clinical Orthopaedics and Related Research, 479(6):1398.

Silva, A. B. e Moraes, I. H. S. d. (2012). O caso da rede universitária de telemedicina: análise da entrada da telessaúde na agenda política brasileira. Physis: Revista de Saúde Coletiva, 22:1211–1235.

Silva, D. F. (2017). Large-Scale Similarity-Based Time Series Mining. PhD thesis, Universidade de São Paulo, São Carlos.

Silva, D. F., de M. Júnior, J. G. B., Domingues, L. V., and Mazzu-Nascimento, T. (2023). Hemoglobin estimation from smartphone-based photoplethysmography with small data. In Computer-Based Medical Systems, page No prelo. IEEE.

Silva, D. F., Giusti, R., Keogh, E., and Batista, G. E. (2018). Speeding up similarity search under dynamic time warping by pruning unpromising alignments. Data Mining and Knowledge Discovery, 32:988–1016.

Silva, H. H. da, Rocha, M., Martins, G. G. V., Fernandes, M., Morales, A. S., & Panisson, A. (2023). Perspectivas da Utilização de Teoria da Mente para o Reconhecimento e Intervenção de Estresse Ocupacional. Anais Do Computer on the Beach 2023, 487–489. https://doi.org/10.14210/cotb.v14.p487-489

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

Siyal, A. A., Junejo, A. Z., Zawish, M., Ahmed, K., Khalil, A. e Soursou, G. (2019). Applications of blockchain technology in medicine and healthcare: Challenges and future perspectives. Cryptography, 3(1):3.

Song, T., Yu, K., Eck, U. e Navab, N. (2022). Augmented reality collaborative medical displays (arc-meds) for multi-user surgical planning and intraoperative communication. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, p. 1–8.

Sophiya, E. and Jothilakshmi, S. (2018). Large scale data based audio scene classification. International Journal of Speech Technology, 21:825–836.

Soto, J. C., Galdino, I., Caballero, E., Ferreira, V., Muchaluat-Saade, D. e Albuquerque, C. (2022a). Monitoramento de sinais vitais utilizando redes wi-fi. Em Campista, M. e Duarte, F., editors, Livro de Minicursos do SBRC 2022, chapter 5. SBC, 1 ediÁ„o.

Soto, J. C., Galdino, I., Caballero, E., Ferreira, V., Muchaluat-Saade, D. e Albuquerque, C. (2022b). A survey on vital signs monitoring based onWi-Fi CSI data. Computer Communications, 195:99–110.

Sterbis, J. R., Hanly, E. J., Herman, B. C., Marohn, M. R., Broderick, T. J., Shih, S. P., Harnett, B., Doarn, C. e Schenkman, N. S. (2008). Transcontinental telesurgical nephrectomy using the da vinci robot in a porcine model. Urology, 71(5):971–973.

Stoeger, K. e Schmidhuber, M. (2020). The use of data from electronic health records in times of a pandemic—a legal and ethical assessment. Journal of Law and the Biosciences, 7(1):lsaa041.

Su, T., Calvo, R. A., Jouaiti, M., Daniels, S., Kirby, P., Dijk, D.-J., della Monica, C. e Vaidyanathan, R. (2023). Assessing a sleep interviewing chatbot to improve subjective and objective sleep: Protocol for an observational feasibility study. JMIR Res Protoc, 12:e45752.

Sundararajan, M., Taly, A., and Yan, Q. (2016). Gradients of counterfactuals. arXiv preprint arXiv:1611.02639.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818–2826.

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9.

Tan, C. W., Bergmei, C., Petitjean, F., Schmidt, D., Webb, G. I., Bagnall, A., and Keogh, E. (2020). The monash, uea & ucr time series extrinsic regression archivee. http://tseregression.org/.

Tan, C. W., Bergmeir, C., Petitjean, F., and Webb, G. I. (2021). Time series extrinsic regression. Data Mining and Knowledge Discovery, pages 1–29.

Tan, T. F., Li, Y., Lim, J. S., Gunasekeran, D. V., Teo, Z. L., Ng,W. Y. e Ting, D. S. (2022). Metaverse and virtual health care in ophthalmology: opportunities and challenges. The Asia-Pacific Journal of Ophthalmology, 11(3):237–246.

Tanwar, S., Parekh, K. e Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50:102407.

Taylor, L. and Nitschke, G. (2018). Improving deep learning with generic data augmentation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1542–1547. IEEE.

Thoms, L.-J., Colicchia, G., and Girwidz, R. (2017). Phonocardiography with a smartphone. Physics Education, 52(2):023004.

Tian, S., Yang, W., Grange, J. M. Le, Wang, P., Huang, W., & Ye, Z. (2019). Smart healthcare: making medical care more intelligent. Global Health Journal, 3(3), 62–65. https://doi.org/10.1016/j.glohj.2019.07.001

Tiffin, P. A., & Paton, L. W. (2018). Rise of the machines? Machine learning approaches and mental health: Opportunities and challenges. British Journal of Psychiatry, 213(3), 509–510. https://doi.org/10.1192/bjp.2018.105

Tormo, G. D., Mármol, F. G., Girao, J. e Pérez, G. M. (2013). Identity management–in privacy we trust: bridging the trust gap in ehealth environments. IEEE security & privacy, 11(6):34–41.

Tribunal de Contas da União (TCU) (2020). Levantamento de aplicações blockchain: Aplicações blockchain no setor pública do brasil (apêndice 1). Sumário executivo, Tribunal de Contas da União (TCU).

Tschorsch, F. e Scheuermann, B. (2016). Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communications Surveys & Tutorials, 18(3):2084–2123.

Tsumura, R., Hardin, J. W., Bimbraw, K., Grossestreuer, A. V., Odusanya, O. S., Zheng, Y., Hill, J. C., Hoffmann, B., Soboyejo, W. e Zhang, H. K. (2021). Tele-operative low-cost robotic lung ultrasound scanning platform for triage of covid-19 patients. IEEE Robotics and Automation Letters, 6(3):4664–4671.

Uchiyama, T., Sogi, N., Niinuma, K., and Fukui, K. (2023). Visually explaining 3d-cnn predictions for video classification with an adaptive occlusion sensitivity analysis. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1513–1522.

Uddin, M. A., Stranieri, A., Gondal, I. e Balasubramanian, V. (2018). Continuous patient monitoring with a patient centric agent: A block architecture. IEEE Access, 6:32700–32726.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605.

Vestergaard, T. B. e Wulf, H. C. (2020). Accuracy of mobile digital teledermoscopy for skin self-examinations in adults at high risk of skin cancer: an open-label, randomised controlled trial. The Lancet Digital Health, 2(4):e175–e182.

von Stillfried, D. G. (2021). Toward a digital triage platform for the german healthcare system. Mission–Innovation: Telematics, eHealth and High-Definition Medicine in Patient-Centered Acute Medicine, p. 121.

Wen, C. L. (2008). Telemedicina e telessaúde: um panorama no brasil. Informática Pública, 10(2):7–15.

WHO, G. W. H. O. (2022). International classification of diseases, eleventh revision ICD-11. Relatório técnico, World Health Organization.

WHO, W. H. O. (2011). mhealth: new horizons for health through mobile technologies. mHealth: new horizons for health through mobile technologies.

William, W., Ware, A., Basaza-Ejiri, A. H. e Obungoloch, J. (2018). A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Computer methods and programs in biomedicine, 164:15–22.

Williams, A. M., Bhatti, U. F., Alam, H. B. e Nikolian, V. C. (2018). The role of telemedicine in postoperative care. Mhealth, 4.

Wolpert, D. H. (2002). The supervised learning no-free-lunch theorems. Soft computing and industry, pages 25–42.

World Health Organization (2022). Consolidated telemedicine implementation guide. WHO, Geneva.

Wu, J., Nan, Y., Kumar, V., Tian, D., Bianchi, A., Payer, M., & Xu, D. (2020). BLESA: Spoofing attacks against reconnections in bluetooth low energy. WOOT 2020 - 14th USENIX Workshop on Offensive Technologies, Co-Located with USENIX Security 2020, 8, 8. https://dl.acm.org/doi/abs/10.5555/3488877.3488885

Xia, Q., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X. e Guizani, M. (2017). MeDShare: Trust-less medical data sharing among cloud service providers via blockchain. IEEE Access, 5:14757–14767.

Xie, N., Ras, G., van Gerven, M., and Doran, D. (2020). Explainable deep learning: A field guide for the uninitiated. J. Artif. Intell. Res., 73:329–396.

Xu, Q., Huang, G., Yu, M. e Guo, Y. (2020). Fall prediction based on key points of human bones. Physica A: Statistical Mechanics and its Applications, 540(C).

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C. e Rimba, P. (2017). A taxonomy of blockchain-based systems for architecture design. Em 2017 IEEE international conference on software architecture (ICSA), p. 243–252. IEEE.

Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., & Yang, H. (2018). An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1–10. https://doi.org/10.1109/JTEHM.2018.2822681

Yaqoob, I., Salah, K., Jayaraman, R. e Al-Hammadi, Y. (2022). Blockchain for healthcare data management: Opportunities, challenges, and future recommendations. Neural Computing and Applications, 34.

Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H. A., Zimmerman, Z., Silva, D. F., Mueen, A., and Keogh, E. (2018). Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile. Data Mining and Knowledge Discovery, 32(1):83–123.

Young, B. K., Cole, E. D., Shah, P. K., Ostmo, S., Subramaniam, P., Venkatapathy, N., Tsai, A. S. H., Coyner, A. S., Gupta, A., Singh, P., Chiang, M. F., Kalpathy-Cramer, J., Chan, R. V. P. e Campbell, J. P. (2023). Efficacy of Smartphone-Based Telescreening for Retinopathy of Prematurity With and Without Artificial Intelligence in India. JAMA Ophthalmology.

Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J. A. e Liu, R. P. (2020). Survey: Sharding in blockchains. IEEE Access, 8:14155–14181.

Yue, X., Wang, H., Jin, D., Li, M. e Jiang, W. (2016). Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. Journal of medical systems, 40:1–8.

Zanon, V. R., Romancicni, E. M. R., Ourique, F. de O., & Morales, A. S. (2021). Dispositivo com Interface Vestível para a Aquisição, Processamento e Transmissão do Sinal Cardíaco em Exame de Eletrocardiograma. Anais Do Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), 48–59. https://doi.org/10.5753/SBCAS.2021.16052

Zanon, V. R., Romancini, E. M. R., Manoel, B. de E., Lau, J., Ourique, F. de O., & Morales, A. S. (2022). Avaliação experimental de uma camada de segurança implementada em dispositivo vestível cardíaco para Internet das Coisas Médicas. Anais Do Simpósio Brasileiro de Segurança Da Informação e de Sistemas Computacionais (SBSeg), 97–110. https://doi.org/10.5753/SBSEG.2022.224659

Zanon, V. R., Romancini, E. M. R., Ourique, F. de O., & Morales, A. S. (2022). Wearable technology for electrocardiogram and vectocardiogram using the Dower Transformation. | Zanon | Journal of Health Informatics. Journal of Health Informatics, 14(1), 3–10. http://www.jhi-sbis.saude.ws/ojs-jhi/index.php/jhi-sbis/article/view/889

Zeiler, M. D. and Fergus, R. (2014a). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer.

Zeiler, M. D. and Fergus, R. (2014b). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer.

Zeiler, M. D., Taylor, G. W., and Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. In 2011 international conference on computer vision, pages 2018–2025. IEEE.

Zellers, R., Bisk, Y., Farhadi, A., and Choi, Y. (2019). From recognition to cognition: Visual commonsense reasoning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6720–6731.

Zhang, J., Yu, N., Wang, B. e Lv, X. (2022). Trends in the use of augmented reality, virtual reality, and mixed reality in surgical research: A global bibliometric and visualized analysis. Indian Journal of Surgery, 84(Suppl 1):52–69.

Zhang, P., White, J., Schmidt, D. C., Lenz, G. e Rosenbloom, S. T. (2018). FHIRChain: applying blockchain to securely and scalably share clinical data. Computational and structural biotechnology journal, 16:267–278.

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1).

Zhang, X. e Poslad, S. (2018). Blockchain support for flexible queries with granular access control to electronic medical records EMR. Em 2018 IEEE International conference on communications (ICC), p. 1–6. IEEE.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2921–2929.

Ziebart, C., Kfrerer, M. L., Stanley, M. e Austin, L. C. (2023). A digital-first health care approach to managing pandemics: Scoping review of pandemic self-triage tools. J Med Internet Res, 25:e40983.

Capa para Minicursos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde
Data de publicação
27/06/2023

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo
ISBN-13 (15)
978-85-7669-546-2