Minicursos da ERCEMAPI 2020

Autores

Ariel Soares Teles (ed.)
IFMA
Dario Brito Calçada (ed.)
UESPI
Nécio Lima Veras (ed.)
IFCE

Sinopse

O Livro de Minicursos da ERCEMAPI 2020 colabora com o objetivo da Escola Regional de Computação Ceará, Maranhão e Piauí em disseminar o conhecimento técnico e científico sobre temas e assuntos de vanguarda na área de Computação. Em sua 8ª edição, tendo como tema central Computação: Ciência, Inovação e Empreendedorismo, os minicursos abordam conteúdos relacionados à ciência de dados, inteligência artificial, desenvolvimento web, métricas de software e revisão sistemática da literatura, como forma de atualizar os conhecimentos da comunidade acadêmica e profissional, de uma forma didática e de amplo acesso ao público. Os nove capítulos deste livro possuem metodologias e ferramentas para a área de Tecnologia da Informação e Comunicação, sendo uma excelente oportunidade para a familiarização dos interessados com novos temas de pesquisa que podem vir a ser úteis em suas vidas profissionais.

 

Capítulos:

1. Descoberta Automática de Conhecimento por meio de Redes de Regras de Associação Filtradas
Matheus William Gomes dos Santos, Andreiver Mateus Ferreira Silva, Dario Brito Calçada
2. COVID-19: Aquisição, tratamento e visualizações interativas de dados do Ministerio da Saúde
Alexandre R. C. Ramos, Jonnison L. Ferreira, Moises Laurence de F. Lima Junior, Aristofanes Corrêa Silva
3. Utilização de Técnicas de Data Augmentation em Imagens: Teoria e Prática
Maíla Claro, Luis Vogado, Justino Santos, Rodrigo Veras
4. Detectando Padrões de Sociabilidade de Seres Humanos Através do Processamento de Eventos Complexos
Ivan Rodrigues, Francisco Silva, Luciano Coutinho, Jean Marques, Ariel Soares Teles
5. Desenvolvimento de sistemas Web orientado a reuso com Python, Django e Bootstrap
Cynthia Pinheiro Santiago, Nécio Lima Veras, Anderson Passos de Aragão, Daniel Albuquerque Carvalho, Luciana Alves Amaral
6. Soluções de Aprendizado de Máquina para Estimar em Tempo Real a Pose Humana em Aplicações de Saúde
Renan Nascimento, José Everton Fontenele, Rodrigo Baluz, Rayele Moreira, Silmar Teixeira, Ariel Soares Teles
7. Aprendizagem Profunda em Unity com ML-Agents
Vitor Azevedo Silva, Brenno Yves Damasceno Morais, Suzana Matos França de Oliveira, Danilo Borges da Silva
8. Como Estimar um Software? Métricas para a Aferição de Esforço, Prazo e Custo de um Produto de Software
Washington Henrique Carvalho Almeida, Fernando Escobar, Luciano de Aguiar Monteiro, Aislan Rafael Rodrigues Souza, Sérgio Sierro Leal
9. Levantamento bibliográfico utilizando a ferramenta The End
Martony Demes da Silva, Gleison de Andrade e Silva

Downloads

Não há dados estatísticos.

Referências

[Aggarwal 2015] Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer, New York, USA, 1st edition.

[Abadi et al. 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283, Savannah, GA. USENIX Association.

[Acharya and Ray 2005] Acharya, T. and Ray, A. K. (2005). Image processing: principles and applications. John Wiley & Sons.

[Aggarwal et al. 2014] Aggarwal, C. C., Bhuiyan, M. A., and Hasan, M. A. (2014). Frequent Pattern Mining Algorithms: A Survey, pages 19–64. Springer International Publishing, Cham.

[Agrawal and Shafer 1996] Agrawal, R. and Shafer, J. C. (1996). Parallel mining of association rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962–969.

[Agrawal and Srikant. 1994] Agrawal, R. and Srikant., R. (1994). Fast algorithms for mining association rules. Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proceedings of Twentieth International Conference on Very Large Data Bases (VLDB), pages 487–499.

[Agrawal et al. 1994] Agrawal, R., Imielinski, T., and Swami, A. (1994). Mining Association Rules between Sets of Items in Large Databases. Special Interest Group on Management of Data, 22(2):207–216.

[Aha and Kibler 1991] Aha, D. and Kibler, D. (1991). Instance-based learning algorithms. Machine Learning, 6:37–66.

[Almeida 2019] Almeida, E. S. d. (2019). Software Reuse and Product Line Engineering. In Cha, S., Taylor, R. N., and Kang, K., editors, Handbook of Software Engineering, pages 321–348. Springer International Publishing, Cham.

[Aneja et al. 2019] Aneja, S., Chang, E., and Omuro, A. (2019). Applications of artificial intelligence in neuro-oncology. Current Opinion in Neurology, 32:1.

[AurelianTactics 2018a] AurelianTactics (2018a). Ppo hyperparameters and ranges. https://medium.com/aureliantactics/ppo-hyperparametersand-ranges-6fc2d29bccbe. Acesso em: 30 de jul. de 2020.

[AurelianTactics 2018b] AurelianTactics (2018b). Understanding ppo plots in tensorboard. https://medium.com/aureliantactics/understanding-ppoplots-in-tensorboard-cbc3199b9ba2. Acesso em: 30 de jul. de 2020.

[Ayed et al. 2019] Ayed, I., Ghazel, A., Jaume-i Capó, A., Moyà-Alcover, G., Varona, J., and Martínez-Bueso, P. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International journal of medical informatics, 131:103909.

[Bacinger 2020] Bacinger, T. (2020). What is bootstrap? a short bootstrap tutorial on the what, why, and how. [Online; acesso 20-Julho-2020].

[Barnett et al. 2018] Barnett, I., Torous, J., Staples, P., Sandoval, L., Keshavan, M., and Onnela, J.-P. (2018). Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology, 43(8):1660.

[Basheer and Hajmeer 2000] Basheer, I. A. and Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1):3–31.

[Batchelor and Waltz 2012] Batchelor, B. and Waltz, F. (2012). Intelligent machine vision: techniques, implementations and applications. Springer Science & Business Media.

[Baumann et al. 2011] Baumann, M., Lurbe-Puerto, K., Alzahouri, K., and Aïach, P. (2011). Increased residual disability among poststroke survivors and the repercussions for the lives of informal caregivers. Topics in stroke rehabilitation, 18(2):162–171.

[Bootstrap 2020a] Bootstrap (2020a). Documentação boostrap. [Online; acesso 18- Julho-2020].

[Bootstrap 2020b] Bootstrap (2020b). Sistema grid. [Online; acesso 25-Julho-2020].

[Bootstrap 2020c] Bootstrap (2020c). Tipografia. [Online; acesso 26-Julho-2020].

[Bork 2005] Bork, A. M. T. (2005). Enfermagem baseada em evidências. Guanabara Koogan.

[Braga et al. 2016] Braga, R., Oliveira, P. A., Souza, M., Neto, P. S., Rabêlo, R., and Britto, R. (2016). Estudo prático sobre mapeamento sistemático da literatura utilizando a ferramenta theend. Anais Escola Regional de Informática do Piauí, 1(1):77–91.

[Brandes 2001] Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2):163–177.

[Cairo 2015] Cairo, A. (2015). The Truthful Art: Data, Charts, and Maps for Communication. New Riders.

[Calvo and Peters 2014] Calvo, R. A. and Peters, D. (2014). Positive Computing: Technology for Well-Being and Human Potential. The MIT Press.

[Carneiro et al. 2018] Carneiro, T., Medeiros Da Nobrega, R. V., Nepomuceno, T., Bian, G.-B., De Albuquerque, V. H. C., and Filho, P. P. R. (2018). Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access, 6:61677–61685.

[Carvalho et al. 2012] Carvalho, R. M. F. d., Mazzer, N., and Barbieri, C. H. (2012). Analysis of the reliability and reproducibility of goniometry compared to hand photogrammetry. Acta Ortopédica Brasileira, 20:139–149.

[Chatfield et al. 2014] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.

[Cheek and Buss 1981] Cheek, J. M. and Buss, A. H. (1981). Shyness and sociability. Journal of personality and social psychology, 41(2):330.

[Chen et al. 2018] Chen, K., Gabriel, P., Alasfour, A., Gong, C., Doyle,W. K., Devinsky, O., Friedman, D., Dugan, P., Melloni, L., Thesen, T., Gonda, D., Sattar, S., Wang, S., and Gilja, V. (2018). Patient-specific pose estimation in clinical environments. IEEE Journal of Translational Engineering in Health and Medicine, 6:1–11.

[Chen et al. 2019] Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., and Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: a systematic review. International journal of medical informatics, 123:11–22.

[Choo et al. 2015] Choo, P. L., Gallagher, H. L., Morris, J., Pomeroy, V. M., and Van Wijck, F. (2015). Correlations between arm motor behavior and brain function following bilateral arm training after stroke: a systematic review. Brain and behavior, 5(12):e00411.

[Claro et al. 2020] Claro, M., Vogado, L., Veras, R., Santana, A., Tavares, J., Santos, J., and Machado, V. (2020). Convolution neural network models for acute leukemia diagnosis. In The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020).

[Coleman and Moré 1983] Coleman, T. F. and Moré, J. J. (1983). Estimation of Sparse Jacobian Matrices and Graph Coloring Blems. SIAM Journal on Numerical Analysis, 20(1):187–209.

[Community 2020a] Community, U. (2020a). Overview ml-agents. https://github.com/Unity-Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md. Acesso em: 30 de jul. de 2020.

[Community 2020b] Community, U. (2020b). Using tensorboard to observe training. https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-Tensorboard.md. Acesso em: 30 de jul. de 2020.

[Cugola and Margara 2012] Cugola, G. and Margara, A. (2012). Processing flows of information: From data stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):1–62.

[da Silva et al. 2020] da Silva, M. D., Soares, A. C. B., and Moura, I. C. (2020). Aplicação de ferramentas computacionais para o desenvolvimento do ensino de crianças com autismo: um mapeamento sistemático da literatura. Revista Brasileira de Informática na Educação, 27(03):351.

[Datasus 2020] Datasus (2020). Corona virus brasil. https://covid.saude.gov.br. Acessado em 2020-05-09.

[de Leone 2017] de Leone, L. (2017). Bootstrap: o que é, porque usar e como começar com o framework. [Online; acesso 19-Julho-2020].

[de Vasconcelos and de Carvalho 2004] de Vasconcelos, L. M. R. and de Carvalho, C. L. (2004). Aplicação de Regras de Associação para Mineração de Dados naWeb. Instituto de Informática da Universidade Federal de Goiás, page 20.

[Demchenko 2019] Demchenko, M. (2019). Six huge tech companies that use python: Does it fit your project? [Online; accessed 09-junho-2020].

[Deng 2012] Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142.

[Detroz et al. 2015] Detroz, J. P., Hinz, M., and da Silva Hounsell, M. (2015). Uso de pesquisa bibliográfica em informática na educacão: um mapeamento sistemático. Revista Brasileira de Informática na Educação, 23(01):28.

[DeVries and Taylor 2017] DeVries, T. and Taylor, G. W. (2017). Dataset augmentation in feature space.

[Domínguez-Téllez et al. 2020] Domínguez-Téllez, P., Moral-Muñoz, J. A., Salazar, A., Casado-Fernández, E., and Lucena-Antón, D. (2020). Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: Systematic review and meta-analysis. Games for Health Journal, 9(1):1–10.

[Doyle 2020] Doyle, S. (2020). Migrant workers falling through cracks in health care coverage. CMAJ, 192(28):E819–E820.

[Doyle et al. 2013] Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. (2013). Feedback control theory. Courier Corporation.

[Dragos-Paul and Altar 2014] Dragos-Paul, P. and Altar, A. (2014). Designing an MVC Model for Rapid Web Application Development. Procedia Engineering, 69:1172– 1179.

[Edwards 1982] Edwards, A. (1982). The Social Desirability Variable in Personality Assessment and Research. Greenwood Press.

[Eskes et al. 2016] Eskes, P., Spruit, M., Brinkkemper, S., Vorstman, J., and Kas, M. J. (2016). The sociability score: App-based social profiling from a healthcare perspective. Computers in Human Behavior, 59:39–48.

[EsperTech ] EsperTech. Espertech, esper – complex event processing. http://www.espertech.com/esper/. Online; Accessed: Jul 7, 2019.

[Etzion et al. 2011] Etzion, O., Niblett, P., and Luckham, D. C. (2011). Event processing in action. Manning Greenwich.

[Fathima et al. 2018] Fathima, S., Shankar, S., and Thajudeen, A. A. (2018). Activities of daily living rehab game play system with augmented reality based gamification therapy for automation of post stroke upper limb rehabilitation. Journal of Computational and Theoretical Nanoscience, 15(5):1445–1451.

[Fawcett 2019] Fawcett, A. (2019). A Beginner’s Guide to Web Development.

[Ferreira et al. 2014] Ferreira, C., Guimarães, V., Santos, A., and Sousa, I. (2014). Gamification of stroke rehabilitation exercises using a smartphone. In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pages 282–285.

[Forsyth and Ponce 2002] Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference.

[Foundation 2020a] Foundation, D. S. (2020a). Documentação do django. [Online; accessed 09-junho-2020].

[Foundation 2020b] Foundation, P. S. (2020b). The python package. [Online; accessed 09-junho-2020]

[Frakes and Fox 1996] Frakes, W. and Fox, C. (1996). Quality improvement using a software reuse failure modes model. IEEE Transactions on Software Engineering, 22(4):274–279.

[Freeman 2017] Freeman, A. (2017). Pro ASP.NET Core MVC 2. Apress, London, U.K.

[Frid-Adar et al. 2018] Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H. (2018). Synthetic data augmentation using gan for improved liver lesion classification. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pages 289–293. IEEE.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns. Prentice Hall.

[Gatys et al. 2015] Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style.

[Ghimire 2020] Ghimire, D. (2020). Comparative study on Python web frameworks: Flask and Django.

[Gogia et al. 1987] Gogia, P. P., Braatz, J. H., Rose, S. J., and Norton, B. J. (1987). Reliability and validity of goniometric measurements at the knee. Physical Therapy, 67(2):192–195.

[Gomes and Velho 1997] Gomes, J. and Velho, L. (1997). Image processing for computer graphics. Springer Science & Business Media.

[Gonçalves 2005] Gonçalves, E. C. (2005). Regras de Associação e suas Medidas de Interesse Objetivas e Subjetivas Objective and Subjective Measures for Association Rules. INFOCOMP Journal of Computer Science, 4(1):26–35.

[Gonzalez and Woods 2000] Gonzalez, R. C. and Woods, R. E. (2000). Processamento de imagens digitais. Editora Blucher.

[Google 2019] Google (2019). Welcome To Colaboratory.

[Government 2020] Government, N. Y. S. (2020). New york state covid-19 data. https://data.ny.gov. Acessado em 2020-05-09.

[Graaff and Marshall 2003] Graaff, V. D. and Marshall, K. (2003). Anatomia humana, volume 6.

[Grav et al. 2012] Grav, S., Hellzèn, O., Romild, U., and Stordal, E. (2012). Association between social support and depression in the general population: the hunt study, a cross-sectional survey. Journal of Clinical Nursing, 21(1-2):111–120.

[Grus 2019] Grus, J. (2019). Data Science do zero: Primeiras regras com o Python. Alta Books.

[Han and Kamber 2006] Han, J. and Kamber, M. (2006). Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco, CA, second edition.

[Han et al. 2012] Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann, Waltham, MA, USA, 3rd edition.

[Heljakka et al. 2018] Heljakka, A., Solin, A., and Kannala, J. (2018). Pioneer networks: Progressively growing generative autoencoder. In Asian Conference on Computer Vision, pages 22–38. Springer.

[Hendrickx et al. 2015] Hendrickx, T., Cule, B., Meysman, P., Naulaerts, S., Laukens, K., and Goethals, B. (2015). Mining association rules in graphs based on frequent cohesive itemsets. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9078, pages 637–648.

[Hernández-García and König 2018] Hernández-García, A. and König, P. (2018). Further advantages of data augmentation on convolutional neural networks. In International Conference on Artificial Neural Networks, pages 95–103. Springer.

[Holdener 2008] Holdener, A. (2008). Ajax : the definitive guide. O’Reilly, Farnham.

[Inoue 2018] Inoue, H. (2018). Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929.

[ISBRASIL 2017] ISBRASIL (2017). O que é bootstrap? [Online; acesso 21-Julho- 2020].

[Johnson et al. 2016] Johnson, W., Onuma, O., Owolabi, M., and Sachdev, S. (2016). Stroke: a global response is needed. Bulletin of the World Health Organization, 94(9):634.

[jQuery 2020] jQuery, F. (2020). jquery write less, do more. [Online; acesso 25-Julho- 2020].

[Juliani et al. 2018] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., and Lange, D. (2018). Unity: A general platform for intelligent agents.

[Jun et al. 2010] Jun, Z., Wenjie, D., Chunxia, Z., Chunmei, Z., Jinyong, L., and Shuangxi, L. (2010). Design of simulation software for mission change real-time control based on pervasive computing. In 2010 First International Conference on Pervasive Computing, Signal Processing and Applications, pages 432–435.

[Kang et al. 2017] Kang, G., Dong, X., Zheng, L., and Yang, Y. (2017). Patchshuffle regularization. arXiv preprint arXiv:1707.07103.

[Keele et al. 2007] Keele, S. et al. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

[Kitchenham 2004a] Kitchenham, B. (2004a). Procedures for performing systematic reviews. Keele university. technical report tr/se-0401, Department of Computer Science, Keele University, UK, 2009-04-28T08:33:13.000+0200.

[Kitchenham 2004b] Kitchenham, B. (2004b). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(2004):1–26.

[Klemettinen et al. 1994] Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. (1994). Finding interesting rules from large sets of discovered association rules”. In Nabil, R., editor, Proceedings of 3rd International Conference on Information and Knowledge Management, pages 401–407.

[Knaflic 2015] Knaflic, C. N. (2015). Storytelling with Data: A Data Visualization Guide for Business Professionals. Wiley.

[Kyriakopoulos 2018] Kyriakopoulos, K. (2018). Distributed complex event processing (cep) system based on the esper engine. Master’s thesis. School of Electrical and Computer Engineering, Technical University of Crete.

[Lakatos and Marconi 1991] Lakatos, E. M. and Marconi, M. d. A. (1991). Metodologia científica. 2a edição. São Paulo: Atlas.

[Lanham 2018] Lanham, M. (2018). Learn Unity ML-Agents – Fundamentals of Unity Machine Learning. Packt Publishing Ltd., Livery Place 35 Livery Street Birmingham B3 2PB, UK.

[Le and Vo 2016] Le, T. and Vo, B. (2016). The lattice-based approaches for mining association rules: a review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(4):140–151.

[Lee et al. 2012] Lee, M. M., Cho, H.-y., and Song, C. H. (2012). The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. American journal of physical medicine & rehabilitation, 91(8):689–700.

[Lee et al. 2019] Lee, U., Han, K., Cho, H., Chung, K.-M., Hong, H., Lee, S.-J., Noh, Y., Park, S., and Carroll, J. M. (2019). Intelligent positive computing with mobile, wearable, and iot devices: Literature review and research directions. Ad Hoc Networks, 83:8–24.

[Liu et al. 2019] Liu, S., Yin, Y., and Ostadabbas, S. (2019). In-bed pose estimation: Deep learning with shallow dataset. IEEE Journal of Translational Engineering in Health and Medicine, 7.

[Luckham 2008] Luckham, D. (2008). The power of events: An introduction to complex event processing in distributed enterprise systems. In Bassiliades, N., Governatori, G., and Paschke, A., editors, Rule Representation, Interchange and Reasoning on the Web, pages 3–3, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Lugaresi et al. 2019] Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M. G., Lee, J., Chang,W.-T., Hua,W., Georg, M., and Grundmann, M. (2019). Mediapipe: A framework for building perception pipelines.

[Manhas 2017] Manhas, J. (2017). Initial framework for website design and development. International Journal of Information Technology, 9(4):363–375.

[Markowetz et al. 2014] Markowetz, A., Błaszkiewicz, K., Montag, C., Switala, C., and Schlaepfer, T. E. (2014). Psycho-informatics: Big data shaping modern psychometrics. Medical Hypotheses, 82(4):405 – 411.

[Marques Filho and Neto 1999] Marques Filho, O. and Neto, H. V. (1999). Processamento digital de imagens. Brasport.

[McKinney 2012] McKinney,W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. ”O’Reilly Media, Inc.”.

[Meeks 2015] Meeks, E. (2015). D3.js in Action. Manning Publications.

[Meo et al. 1996] Meo, R., Psaila, G., and Ceri, S. (1996). A new SQL-like operator for mining association rules. In Vijayaraman, T., editor, Proceedings of the 22nd International Conference on very Large Data Bases, pages 122–123.

[Mills and Stufflebeam 2005] Mills, F. and Stufflebeam, R. (2005). Introduction to intelligent agents. http://www.mind.ilstu.edu/curriculum/ants_nasa/ intelligent_agents.php. Acesso em: 30 de jul. de 2020.

[Mitchell 2019] Mitchell, R. (2019). Web Scraping com Python – 2a edição: Coletando mais dados da web moderna. NOVATEC.

[Moccia et al. 2019] Moccia, S., Migliorelli, L., Carnielli, V., and Frontoni, E. (2019). Preterm infants’ pose estimation with spatio-temporal features. IEEE Transactions on Biomedical Engineering, pages 1–1.

[Molina-Ríos and Pedreira-Souto 2020] Molina-Ríos, J. and Pedreira-Souto, N. (2020). Comparison of development methodologies in web applications. Information and Software Technology, 119:106238.

[Moosavi-Dezfooli et al. 2015] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2015). Deepfool: a simple and accurate method to fool deep neural networks.

[Moreira et al. 2020] Moreira, R., Teles, A., Fialho, R., [dos Santos], T. C. P., Vasconcelos, S. S., [de Sá], I. C., Bastos, V. H., Silva, F., and Teixeira, S. (2020). Can human posture and range of motion be measured automatically by smart mobile applications? Medical Hypotheses, 142:109741.

[Moreno-Barea et al. 2018] Moreno-Barea, F. J., Strazzera, F., Jerez, J. M., Urda, D., and Franco, L. (2018). Forward noise adjustment scheme for data augmentation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 728–734. IEEE.

[Moura et al. 2020] Moura, I., Teles, A., Silva, F., Viana, D., Coutinho, L., Barros, F., and Endler, M. (2020). Mental health ubiquitous monitoring supported by social situation awareness: A systematic review. Journal of Biomedical Informatics, 107:103454.

[Namaki et al. 2017] Namaki, M. H., Wu, Y., Song, Q., Lin, P., and Ge, T. (2017). Discovering Graph Temporal Association Rules. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management - CIKM ’17, pages 1697– 1706.

[Nettleton 2013] Nettleton, D. F. (2013). Data mining of social networks represented as graphs. Computer Science Review, 7(1):1–34.

[Newman 2010] Newman, M. (2010). Networks: An introduction, volume 55. Oxford University Press, New York, USA, 1st edition.

[Nitesh VC 2002] Nitesh VC, Kevin WB, L. O. K.W. (2002). Smote: synthetic minority over-sampling technique. In Journal of Artificial Intelligence Research, page 321–357.

[O’Neil 2008] O’Neil, E. J. (2008). Object/relational mapping 2008: hibernate and the entity data model (edm). In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, SIGMOD ’08, pages 1351–1356, Vancouver, Canada. Association for Computing Machinery.

[Olguin et al. 2009] Olguin, D., Waber, B., Kim, T., Mohan, A., Ara, K., and Pentland, A. (2009). Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 39:43–55.

[Onnela et al. 2014] Onnela, J.-P., Waber, B. N., Pentland, A., Schnorf, S., and Lazer, D. (2014). Using sociometers to quantify social interaction patterns. Scientific reports, 4:5604.

[Pandey et al. 2009] Pandey, G., Chawla, S., Poon, S., Arunasalam, B., and Davis, J. G. (2009). Association Rules Network: Definition and Applications. Statistical Analysis and Data Mining, 1(4):260–179.

[Pascal and Hugo 2010] Pascal, V. and Hugo, L. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371–3408.

[Penatti et al. 2015] Penatti, O. A., Nogueira, K., and Dos Santos, J. A. (2015). Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 44–51.

[Pereira 2019] Pereira, W. (2019). Api: conceito, exemplos de uso e importância da integração para desenvolvedores. https://take.net/blog/devs/apiconceito-e-exemplos. Acesso em: 30 de jul. de 2020.

[Petersen et al. 2008] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematicmapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12, pages 1–10.

[Piri et al. 2018] Piri, S., Delen, D., Liu, T., and Paiva,W. (2018). Development of a new metric to identify rare patterns in association analysis: The case of analyzing diabetes complications. Expert Systems with Applications, 94:112–125.

[Poole and Mackworth 2010] Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press.

[Radford et al. 2015] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks.

[Raffin and Hummel 2018] Raffin, E. and Hummel, F. C. (2018). Restoring motor functions after stroke: multiple approaches and opportunities. The Neuroscientist, 24(4):400–416.

[Reitz 2020] Reitz, K. (2020). requests: Python http for humans. URL: http://pythonrequests.org.

[Rodrigues et al. 2020] Rodrigues, I., Silva, F., Coutinho, L., and Teles, A. S. (2020). Mental health ubiquitous monitoring: Detecting context-enriched sociability patterns through complex event processing. In IEEE 33rd International Symposium on Computer Based Medical Systems (CBMS).

[Roriz 2017] Roriz, M. (2017). DG2CEP : An On-line Algorithm for Real-time Detection of Spatial Clusters from Large Data Streams through Complex Event Processing Marcos. PhD thesis, Potífica Universidade Católica do Rio de Janeiro, https://www.maxwell.vrac.puc-rio.br/30249/30249.PDF.

[Sabharwal and Kumar 2008] Sabharwal, S. and Kumar, A. (2008). Methods for assessing leg length discrepancy. Clinical Orthopaedics and Related Research, 466(12):2910–2922.

[Sahar 2003] Sahar, S. (2003). What Is Interesting: Studies on Interestingness in Knowledge Discovery. PhD thesis, Tel-Aviv University.

[Schacter 1999] Schacter, D. L. (1999). The seven sins of memory: Insights from psychology and cognitive neuroscience. American Psychologist, 54(3):182–203.

[Scherbakov et al. 2013] Scherbakov, N., Von Haehling, S., Anker, S. D., Dirnagl, U., and Doehner, W. (2013). Stroke induced sarcopenia: muscle wasting and disability after stroke. International journal of cardiology, 170(2):89–94.

[Schmidt et al. 2004] Schmidt, D. C., Gokhale, A., and Natarajan, B. (2004). Leveraging Application Frameworks. Queue, 2(5):66–75.

[Schulman et al. 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[Sear et al. 2020] Sear, R. F., Velásquez, N., Leahy, R., Restrepo, N. J., Oud, S. E., Gabriel, N., Lupu, Y., and Johnson, N. F. (2020). Quantifying covid-19 content in the online health opinion war using machine learning. IEEE Access, 8:91886–91893.

[Servia-Rodríguez et al. 2017] Servia-Rodríguez, S., Rachuri, K. K., Mascolo, C., Rentfrow, P. J., Lathia, N., and Sandstrom, G. M. (2017). Mobile sensing at the service of mental well-being: A large-scale longitudinal study. In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages 103–112, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.

[Shiffman et al. 2008] Shiffman, S., Stone, A. A., and Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4(1):1–32.

[Shijie et al. 2017] Shijie, J., Ping, W., Peiyi, J., and Siping, H. (2017). Research on data augmentation for image classification based on convolution neural networks. In 2017 Chinese automation congress (CAC), pages 4165–4170. IEEE.

[Shorten and Khoshgoftaar 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):60.

[Silva 2010] Silva, T. S. A. (2010). Um Estudo de Medidas de Centralidade e Confiabilidade em Redes. PhD thesis, Centro Federal de Educação Tecnológica do Rio de Janeiro.

[Simard et al. 2016] Simard, F., St-Pierre, J., and Biskri, I. (2016). Mining and visualizing robust maximal association rules on highly variable textual data in entrepreneurship. In Proceedings of the 8th International Conference on Management of Digital EcoSystems - MEDES, pages 215–222.

[Sommerville 2016] Sommerville, I. (2016). Software engineering. Pearson, Harlow Singapore.

[Stephens 2020] Stephens, R. (2020). Redmonk slackchat: January 2020 programming language rankings. Procedia Engineering.

[Summers and Dinneen 2019] Summers, C. and Dinneen, M. J. (2019). Improved mixedexample data augmentation. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1262–1270. IEEE.

[Sutton and Barto 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

[Takahashi et al. 2019] Takahashi, R., Matsubara, T., and Uehara, K. (2019). Data augmentation using random image cropping and patching for deep cnns. IEEE Transactions on Circuits and Systems for Video Technology.

[Taylor and Nitschke 2017] Taylor, L. and Nitschke, G. (2017). Improving deep learning using generic data augmentation. arXiv preprint arXiv:1708.06020.

[Taylor and Nitschke 2018] Taylor, L. and Nitschke, G. (2018). Improving deep learning with generic data augmentation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1542–1547. IEEE.

[Toivonen 1996] Toivonen, H. (1996). Sampling large databases for association rules. The VLDB Journal, pages 134–145.

[Torales et al. 2020] Torales, J., O’Higgins, M., Castaldelli-Maia, J. M., and Ventriglio, A. (2020). The outbreak of covid-19 coronavirus and its impact on global mental health. International Journal of Social Psychiatry.

[Torous et al. 2016] Torous, J., Kiang, M. V., Lorme, J., and Onnela, J.-P. (2016). New tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health, 3(2).

[Trivedi 2019] Trivedi, C. (2019). Proximal policy optimization tutorial (actorcritic method). https://towardsdatascience.com/proximalpolicy-optimization-tutorial-part-1-actor-critic-methodd53f9afffbf6. Acesso em: 30 de jul. de 2020.

[Trull and Ebner-Priemer 2013] Trull, T. J. and Ebner-Priemer, U. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9(1):151–176.

[Umberson and Montez 2010] Umberson, D. and Montez, J. K. (2010). Social relationships and health: A flashpoint for health policy. Journal of Health and Social Behavior, 51:S54–S66.

[Usman and Usman 2016] Usman, M. and Usman, M. (2016). Multi-level mining and visualization of informative association rules. Journal of Information Science and Engineering, 32(4):1061–1078.

[Van de Mortel et al. 2008] Van de Mortel, T. F. et al. (2008). Faking it: social desirability response bias in self-report research. Australian Journal of Advanced Nursing, The, 25(4):40.

[Vargas et al. 2016] Vargas, A. C. G., Paes, A., and Vasconcelos, C. N. (2016). Um estudo sobre redes neurais convolucionais e sua aplicação em detecção de pedestres. In Proceedings of the xxix conference on graphics, patterns and images, volume 1.

[Veerbeek et al. 2011] Veerbeek, J. M., Kwakkel, G., van Wegen, E. E., Ket, J. C., and Heymans, M. W. (2011). Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke, 42(5):1482–1488.

[Vinaya and Shah 2016] Vinaya, M. and Shah, K. (2016). Performance Evaluation of Distributed Association Rule Mining Algorithms. Procedia - Procedia Computer Science, 79:127–134.

[Voulodimos et al. 2018] Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018:1–13.

[Wang 2014] Wang, J. (2014). Encyclopedia of business analytics and optimization. IGI Global.

[Wang et al. 2017] Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., and Campbell, A. T. (2017). StudentLife: Using Smartphones to Assess Mental Health and Academic Performance of College Students, pages 7–33. Springer International Publishing, Cham.

[Wongkoblap et al. 2017] Wongkoblap, A., Vadillo, M. A., and Curcin, V. (2017). Researching mental health disorders in the era of social media: Systematic review. Journal of Medical Internet Research, 19(6):e228.

[Zaki and Meira 2013] Zaki, M. J. and Meira, M. J. (2013). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.

[Zhang et al. 2019] Zhang, Y.-D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., and Wang, S.-H. (2019). Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications, 78(3):3613–3632.

[Zhao et al. 2009] Zhao, Y., Zhang, C., and Cao, L. (2009). Post-Mining of Association Rules : Techniques for Effective Knowledge Extraction.

[Zhong et al. 2020] Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2020). Random erasing data augmentation. In AAAI, pages 13001–13008.

[Zhu et al. 2017] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired imageto- image translation using cycle-consistent adversarial networks.

Almeida, W. H. C. and Furtado, F. (2019). Análise sobre métricas nos contratos de fábricas de software no âmbito da administração pública federal. 1. ed. Rio de Janeiro: Albatroz. v. 1

BHARDWAJ, M.; RANA, A. Key Software Metrics and its Impact on each other for Software Development Projects.

ACM SIGSOFT Software Engineering Notes, v. 41, n. 1, p. 1–4, 2016.

CANEDO, E. D.; DA COSTA, R. P. Methods and metrics for estimating and planning agile software projects. Americas Conference on Information Systems 2018: Digital Disruption, AMCIS 2018, 2018.

DAVIS, C. W. H. Agile Metrics in Action: Measuring and Enhancing the Performance of Agile Teams. 1st. ed. USA: Manning Publications Co., 2015.

ESCOBAR, Fernando et al. (2019). Modelo CEK (Canvas+ EAP+ Kanban): Integração de Ferramentas de Gestão para transformar ideias em projetos colaborativos, ágeis, controláveis e efetivos.

FENTON, N.; BIEMAN, J. Software Metrics: A Rigorous and Practical Approach. 3rd. ed. USA: CRC Press, Inc., 2014.

Jacobson, Ivar (2002). A Resounding ‘Yes’ to Agile Processes—But Also More. Cutter IT Journal.

JETHANI, K. Software metrics for effective project management. International Journal of Systems Assurance Engineering and Management, v. 4, n. 4, p. 335–340, 2013.

Khaled Yacoub, M., Abdel Athim Mostafa, M. and Bahaa Farid, A. (2016). A New Approach for Distributed Software Engineering Teams Based on Kanban Method for Reducing Dependency. Journal of Software, v. 11, n. 12, p. 1231–1241

Leandro, W. and Vieira, H. (2018). Canvas de Projeto - Canvas Project Design. 1a. ed. São Paulo: Riemma.

O’REGAN, G. Software Metrics. In: Undergraduate Topics in Computer Science. Cham: Springer International Publishing, 2014. p. 151–183.

PADMINI, K. V. J.; DILUM BANDARA, H. M. N.; PERERA, I. Use of software metrics in agile software development process. MERCon 2015 - Moratuwa Engineering Research Conference, p. 312–317, 2015.

PMI (2017). Um Guia do Conhecimento em Gerenciamento de Projetos (Guia PMBOK).

Pressman, Roger; Maxim, Bruce (2016). Engenharia de Software, Uma Abordagem Profissional. 8. Ed. McGraw-Hill Global Education

Sommerville, Ian (2019). Engenharia de Software. 10. ed. Pearson Education.

Capa para Minicursos da ERCEMAPI 2020
Data de publicação
10/09/2020

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo
ISBN-13 (15)
978-65-87003-11-5