Identificação e Caracterização de Campanhas de Propagandas Eleitorais Antecipadas Brasileiras no Twitter

  • Marcelo M. R. Araujo UFMG
  • Carlos H. G. Ferreira UFMG / UFOP
  • Julio C. S. Reis UFV
  • Ana P. C. Silva UFMG
  • Jussara M. Almeida UFMG

Abstract


In this work, we investigate the coordinated promotion of early political campaigns by users on Twitter, focusing on the Brazilian 2022 pre-election period. The explored methodology involves modeling a network based on coretweets, extracting a backbone of the network, and finally identifying and analyzing communities focused on user characteristics and shared content. The results show a significant number of communities promoting content related to different pre-election candidates from different political spectrums, including right-wing and left-wing. We also found that right-wing communities are much larger than left-wing communities, both in terms of the number of users and the amount of information shared. We believe that our results can provide interesting inputs for understanding the phenomenon in the Brazilian context and, in the future, assist in the formulation of mechanisms to efficiently detect coordinated actions (i.e., pre-election campaigns) on social media platforms.

References

Badawy, A., Addawood, A., Lerman, K., and Ferrara, E. (2019). Characterizing the 2016 russian ira influence campaign. Social Network Analysis and Mining, 9:1–11.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.

Caetano, J., Guimarães, S., Araújo, M. M., Silva, M., Reis, J. C., Silva, A. P., Benevenuto, F., and Almeida, J. M. (2022). Characterizing early electoral advertisements on twitter: A brazilian case study. In Proc. of the SocInfo.

da Rosa Jr, J. M., Linhares, R. S., Ferreira, C. H. G., Nobre, G. P., Murai, F., and Almeida, J. M. (2022). Uncovering discussion groups on claims of election fraud from twitter. In Proc. of the SocInfo.

Danaditya, A., Ng, L. H. X., and Carley, K. M. (2022). From curious hashtags to polarized effect: profiling coordinated actions in indonesian twitter discourse. Social Network Analysis and Mining, 12(1).

David, E. and Jon, K. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, USA.

Ferrara, E., Chang, H., Chen, E., Muric, G., and Patel, J. (2020). Characterizing social media manipulation in the 2020 us presidential election. First Monday.

Ferreira, C. H., Murai, F., Silva, A. P., Almeida, J. M., Trevisan, M., Vassio, L., Mellia, M., and Drago, I. (2021). On the dynamics of political discussions on instagram: A network perspective. Online Social Networks and Media, 25:100155.

Ferreira, C. H., Murai, F., Silva, A. P., Trevisan, M., Vassio, L., Drago, I., Mellia, M., and Almeida, J. M. (2022). On network backbone extraction for modeling online collective behavior. Plos one, 17(9).

Giglietto, F., Righetti, N., Rossi, L., and Marino, G. (2020). It takes a village to manipulate the media: coordinated link sharing behavior during 2018 and 2019 italian elections. Information, Communication & Society, 23(6):867–891.

Grimminger, L. and Klinger, R. (2021). Hate towards the political opponent: A twitter corpus study of the 2020 us elections on the basis of offensive speech and stance detection. In Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.

Guimaraes, S., Silva, M., Caetano, J., Araújo, M., Santos, J., Reis, J. C., Silva, A. P., Benevenuto, F., and Almeida, J. M. (2022). Análise de propagandas eleitorais antecipadas no twitter. In Anais do BrasNAM.

Keller, F., Schoch, D., Stier, S., and Yang, J. (2020). Political astroturfing on twitter: How to coordinate a disinformation campaign. Political Communications.

Linhares, R. S., da Rosa Jr, J. M., Ferreira, C. H. G., Nobre, G. P., Murai, F., and Almeida, J. M. (2022). Uncovering coordinated communities on twitter during the 2020 us election. In Proc. of the ASONAM.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks.

Ng, L. H. X. and Carley, K. M. (2022). Online coordination: methods and comparative case studies of coordinated groups across four events in the united states. In Proc. of the WebScience.

Nobre, G. P., Ferreira, C. H. G., and Almeida, J. M. (2020). Beyond groups: uncovering dynamic communities on the whatsapp network of information dissemination. In Proc. of the SocInfo.

Pacheco, D., Flammini, A., and Menczer, F. (2020). Unveiling coordinated groups behind white helmets disinformation. In Proc. of the Web Conference (WWW).

Saldanha, R. S., Rosa, J. M., Ferreira, C. H., Nobre, G., Murai, F., and Almeida, J. (2022). Uncovering coordinated communities on twitter during the 2020 us election. In Prof. of the ASONAM.

Silva, M., Guimaraes, S., Caetano, J., Araújo, M., Santos, J., Reis, J. C., Silva, A., Benevenuto, F., and Almeida, J. (2021). Propaganda eleitoral antecipada: Uma análise de postagens em mídias sociais. In Anais do BrasNAM.

Tardelli, S., Avvenuti, M., Tesconi, M., and Cresci, S. (2022). Detecting inorganic financial campaigns on twitter. Information Systems, 103:101769.

Vargas, L., Emami, P., and Traynor, P. (2020). On the detection of disinformation campaign activity with network analysis. In Proc. of the SIGSAC.

Varol, O., Ferrara, E., Menczer, F., and Flammini, A. (2017). Early detection of promoted campaigns on social media. EPJ Data Science, 6:1–19.

Ángeles Serrano, M., Boguñá, M., and Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proc. of the National Academy of Sciences, 106(16):6483–6488.
Published
2023-08-06
ARAUJO, Marcelo M. R.; FERREIRA, Carlos H. G.; REIS, Julio C. S.; SILVA, Ana P. C.; ALMEIDA, Jussara M.. Identificação e Caracterização de Campanhas de Propagandas Eleitorais Antecipadas Brasileiras no Twitter. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 12. , 2023, João Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 67-78. ISSN 2595-6094. DOI: https://doi.org/10.5753/brasnam.2023.229879.

Most read articles by the same author(s)

<< < 1 2 3 4 5