Uncovering Collaboration Patterns in Brazilian Computer Science Graduate Programs Through Network Embeddings

  • Icaro Luiz Lage Vasconcelos UFOP
  • Augusto Ferreira Guilarducci UFOP
  • Jadson Castro Gertrudes UFOP
  • Gladston Juliano Prates Moreira UFOP
  • Vander Luis de Souza Freitas UFOP
  • Eduardo Jose da Silva Luz UFOP

Resumo


The Science of Science (SciSci) is crucial for understanding scientific production. However, there remains a gap in analyzing how geographic and productivity factors influence collaboration. This study explores collaboration networks in Brazilian Computer Science graduate programs. Using embeddings, clustering techniques, and Decision trees, we identified a larger group representing average scientific production, while smaller high-performing clusters often include researchers from prestigious institutions. Geographic disparities also highlight regional differences, with the South and Southeast regions dominating distinct groups. These findings emphasize the interplay between location, productivity, and impact, offering insights into collaboration dynamics.

Referências

Bai, X., Zhang, F., Li, J., Xu, Z., Patoli, Z., and Lee, I. (2021). Quantifying scientific collaboration impact by exploiting collaboration-citation network. SCIENTOMETRICS, 126(9):7993–8008.

Caliński, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1):1–27.

CAPES (2021). Relatório de avaliação 2017-2020: Quadrienal 2021. Acesso em: 20 out. 2023.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227.

di Bella, E., Gandullia, L., and Preti, S. (2021). Analysis of scientific collaboration network of italian institute of technology. Scientometrics, 126(10):8517–8539.

Druszcz, F. F. and Vignatti, A. L. (2024). Citation analysis disparity between sub-areas of brazilian computer science. In Brazilian Workshop on Social Network Analysis and Mining (BraSNAM), pages 24–34. SBC.

FitzGerald, C., Huang, Y., Leisman, K. P., and Topaz, C. M. (2023). Temporal dynamics of faculty hiring in mathematics. Humanities and Social Sciences Communications, 10(1):247.

Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., and Barabási, A.-L. (2018). Science of science. Science, 359(6379):eaao0185.

Gabidolla, M. and Carreira-Perpiñán, M. (2022). Optimal interpretable clustering using oblique decision trees. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 400–410, New York, NY, USA. Association for Computing Machinery.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864.

Hamilton, W. L., Ying, R., and Leskovec, J. (2018). Inductive representation learning on large graphs.

Liu, J., Xia, F., Wang, L., Xu, B., Kong, X., Tong, H., and King, I. (2021). Shifu2: A network representation learning based model for advisor-advisee relationship mining. IEEE Transactions on Knowledge and Data Engineering, 33(4):1763–1777.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Cam, L. M. L. and Neyman, J., editors, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297. University of California Press.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. In Bengio, Y. and LeCun, Y., editors, 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.

Priem, J., Piwowar, H., and Orr, R. (2022). Openalex: A fully-open index of scholarly works, authors, venues, institutions, and concepts.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2020). Graph neural networks: A review of methods and applications. AI Open, 1:57–81.

Ángeles Serrano, M., Boguñá, M., and Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proceedings of the National Academy of Sciences, 106(16):6483–6488.
Publicado
20/07/2025
VASCONCELOS, Icaro Luiz Lage; GUILARDUCCI, Augusto Ferreira; GERTRUDES, Jadson Castro; MOREIRA, Gladston Juliano Prates; FREITAS, Vander Luis de Souza; LUZ, Eduardo Jose da Silva. Uncovering Collaboration Patterns in Brazilian Computer Science Graduate Programs Through Network Embeddings. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 14. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 106-119. ISSN 2595-6094. DOI: https://doi.org/10.5753/brasnam.2025.8840.