Institutional Hierarchy and Asymmetry in Brazilian Computer Science Faculty Hiring Network

  • Augusto Ferreira Guilarducci UFOP
  • Icaro Luiz Lage Vasconcelos UFOP
  • Eduardo Jose da Silva Luz UFOP
  • Vander Luis de Souza Freitas UFOP

Resumo


Scientific academia is often shaped by invisible hierarchies that influence career trajectories and institutional prestige. This study examines the prestige and faculty migration of professors affiliated with Brazilian Graduate Programs in Computer Science from 60 institutions. We identify the relationship between the institution’s prestige, hiring patterns, and scientific productivity metrics, tracking the migration of 1084 Professors using data from the 2022 CAPES Graduate Programs evaluation report, Lattes curriculum, and OpenAlex profiles. Our analysis reveals an extreme asymmetry: 90% of professors originate from just 20% of institutions, with only 2.31% professors being hired by more prestigious institutions than their doctorate ones.

Referências

Acuna, D. E., Allesina, S., and Kording, K. P. (2012). Predicting scientific success. Nature, 489(7415):201–202.

Bacco, C. D., Larremore, D. B., and Moore, C. (2018). A physical model for efficient ranking in networks. Science Advances, 4(7):eaar8260.

Barabási, A.-L. and Pósfai, M. (2016). Network Science. Cambridge University Press, Cambridge.

Capes (2024). Plataforma sucupira. Available at: [link]. Accessed on 26/05/2024.

Clauset, A., Arbesman, S., and Larremore, D. B. (2015). Systematic inequality and hierarchy in faculty hiring networks. Science Advances, 1(1):e1400005.

Dong, Y., Johnson, R. A., and Chawla, N. V. (2016). Can scientific impact be predicted? IEEE Transactions on Big Data, 2(1):18–30.

FitzGerald, C., Huang, Y., Leisman, K. P., and Topaz, C. M. (2023). Temporal dynamics of faculty hiring in mathematics. Humanities and Social Sciences Communications, 10(1):247.

Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., and Barabási, A.-L. (2018). Science of science. Science, 359(6379):eaao0185.

Murray, D., Yoon, J., Kojaku, S., Costas, R., Jung, W.-S., Milojević, S., and Ahn, Y.-Y. (2023). Unsupervised embedding of trajectories captures the latent structure of scientific migration. Proceedings of the National Academy of Sciences, 120(52):e2305414120.

Priem, J., Piwowar, H. A., and Orr, R. (2022). Openalex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv preprint arXiv:2205.01833.

Sinatra, R., Wang, D., Deville, P., Song, C., and Barabási, A.-L. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312):aaf5239.

Sugimoto, C. R., Robinson-Garcia, N., Murray, D., Yegros-Yegros, A., Costas, R., and Larivière, V. (2017). Scientists have most impact when they’re free to move. Nature, 550:29–31.

Wapman, K. H., Zhang, S., Clauset, A., and Larremore, D. B. (2022). Quantifying hierarchy and dynamics in us faculty hiring and retention. Nature, 610(7930):120–127.
Publicado
20/07/2025
GUILARDUCCI, Augusto Ferreira; VASCONCELOS, Icaro Luiz Lage; LUZ, Eduardo Jose da Silva; FREITAS, Vander Luis de Souza. Institutional Hierarchy and Asymmetry in Brazilian Computer Science Faculty Hiring Network. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 14. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 148-158. ISSN 2595-6094. DOI: https://doi.org/10.5753/brasnam.2025.8934.

Artigos mais lidos do(s) mesmo(s) autor(es)