Algorithmic Strategy for the Reconstruction and Validation of the Molecular Structure of SARS-CoV-2 Variants
Abstract
Mathematical-computational and physical-chemical aspects involved in the reconstruction of the three-dimensional molecular structure of SARS-CoV-2 proteins are addressed in this article, involving the P.1 variant detected in patients infected in Brazilian soil, especially those in the state of Amazonas. A study was carried out on the theoretical impact of P.1 through the structural reconstruction of proteins where mutagenesis was performed computationally and with the aid of the implementation of an implicit enumeration algorithm of feasibility, Branch-and-Prune, whose solutions were validated through the use of the Ramachandran chart. In this way, even with the absence of crystallographic structures characterizing these mutations, it was possible to computationally model a three-dimensional structure where, at the end, the structural alignment was performed with the crystallography of the ACE2-RBD complex
Keywords:
algorithms, COVID-19 pandemic, distance geometry, SARS-CoV-2, structural reconstruction
References
Berg, J. M., Tymoczko, J. L., Stryer, L., and Gatto, G. J. (2012). Biochemistry. New York.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic acids research, 28(1):235–242.
Dejnirattisai, W., Zhou, D., Supasa, P., et al. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell.
Dill, K. A. and MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science, 338(6110):1042–1046.
Dong, Q. and Wu, Z. (2002). A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. Journal of Global Optimization, 22:365–375.
Fidalgo, F., Maioli, D., Abreu, E., and Lavor, C. (2012). Uma formulação numérica para resolução de problemas de geometria de distâncias moleculares. Simpósio Brasileiro de Pesquisa Operacional.
Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819):115–119.
Lavor, C., Liberti, L., Maculan, N., and Mucherino, A. (2011). The discretizable molecular distance geometry problem. Comput Optim Appl.
Li, Q., Guan, X., Wu, P., et al. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13):1199–1207.
Liberti, L., Lavor, C., Masson, B., and Mucherino, A. (2011). Polynomial cases of the discretizable molecular distance geometry problem.
Maculan, N., Lavor, C., Lee, J., Liberti, L., Mucherino, A., Souza, M., and Xavier, A. E. (2010). The molecular distance geometry problem. Elavio.
Naveca, F., Nascimento, V., Souza, V., et al. (2021). Phylogenetic relationship of SARSCoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein.
Nelson, D. L. and Cox, M. M. (2017). Lehninger Principles of Biochemistry. Macmillan Higher Education, New York, 7 edition.
Newman, J. (2006). A review of techniques for maximizing diffraction from a protein crystal in stilla. Acta Crystallographica Section D, 62(1):27–31.
Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C.,
Schrödinger, LLC (2015). The PyMOL molecular graphics system, version 2.3.0.
Silva, W. and Lavor, C.and Ochiand, L. S. (2008). Cálculo de estruturas de proteínas. Simpósio Brasileiro de Pesquisa Operacional.
Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., et al. (2021). Antibody resistance of sars-cov-2 variants b.1.351 and b.1.1.7.
Wang, X., Lan, J., Ge, J., Yu, J., Shan, S., et al. (2020). Crystal structure of 2019-nCoV spike receptor-binding domain bound with ACE2. Nature, 581(7807):215–220.
Waterhouse, A., Bertoni, M., Bienert, S., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(1):296–303.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic acids research, 28(1):235–242.
Dejnirattisai, W., Zhou, D., Supasa, P., et al. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell.
Dill, K. A. and MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science, 338(6110):1042–1046.
Dong, Q. and Wu, Z. (2002). A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. Journal of Global Optimization, 22:365–375.
Fidalgo, F., Maioli, D., Abreu, E., and Lavor, C. (2012). Uma formulação numérica para resolução de problemas de geometria de distâncias moleculares. Simpósio Brasileiro de Pesquisa Operacional.
Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819):115–119.
Lavor, C., Liberti, L., Maculan, N., and Mucherino, A. (2011). The discretizable molecular distance geometry problem. Comput Optim Appl.
Li, Q., Guan, X., Wu, P., et al. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13):1199–1207.
Liberti, L., Lavor, C., Masson, B., and Mucherino, A. (2011). Polynomial cases of the discretizable molecular distance geometry problem.
Maculan, N., Lavor, C., Lee, J., Liberti, L., Mucherino, A., Souza, M., and Xavier, A. E. (2010). The molecular distance geometry problem. Elavio.
Naveca, F., Nascimento, V., Souza, V., et al. (2021). Phylogenetic relationship of SARSCoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein.
Nelson, D. L. and Cox, M. M. (2017). Lehninger Principles of Biochemistry. Macmillan Higher Education, New York, 7 edition.
Newman, J. (2006). A review of techniques for maximizing diffraction from a protein crystal in stilla. Acta Crystallographica Section D, 62(1):27–31.
Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C.,
Schrödinger, LLC (2015). The PyMOL molecular graphics system, version 2.3.0.
Silva, W. and Lavor, C.and Ochiand, L. S. (2008). Cálculo de estruturas de proteínas. Simpósio Brasileiro de Pesquisa Operacional.
Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., et al. (2021). Antibody resistance of sars-cov-2 variants b.1.351 and b.1.1.7.
Wang, X., Lan, J., Ge, J., Yu, J., Shan, S., et al. (2020). Crystal structure of 2019-nCoV spike receptor-binding domain bound with ACE2. Nature, 581(7807):215–220.
Waterhouse, A., Bertoni, M., Bienert, S., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(1):296–303.
Published
2021-07-18
How to Cite
SOUZA, Clarice de; BESSA, João; FREITAS, Rosiane de; OLIVEIRA, Micael; MOTA, Kelson.
Algorithmic Strategy for the Reconstruction and Validation of the Molecular Structure of SARS-CoV-2 Variants. In: BRAZILIAN E-SCIENCE WORKSHOP (BRESCI), 15. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 65-72.
ISSN 2763-8774.
DOI: https://doi.org/10.5753/bresci.2021.15790.
