Satellite images and deep learning for the prediction of socioeconomic indicators in the Vale do Ribeira
Resumo
Due to low awareness and low investment in data collection and processing in developing countries, industry has struggled to plan and collaborate with public policy on data-driven socioeconomic decisions. This paper presents a deep learning approach to estimate socioeconomic indicators using satellite imagery. For this purpose, a region in southeastern Brazil called Vale do Ribeira was selected as a study case due to its data availability and environmental relevance. We used publicly available data to analyze three socioeconomic indicators: Longevity, Income and Literacy, the main representatives of the Human Development Index. Our preliminary results show a relevant correlation between satellite imagery and the income indicator, although they are not yet conclusive for longevity and literacy.
Referências
Ayush, K., Uzkent, B., Tanmay, K., Burke, M., Lobell, D., & Ermon, S. (2021). Efficient Poverty Mapping from High Resolution Remote Sensing Images. Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), 12-20.
Blumenstock, J. E. (2016). Fighting poverty with data. Science, 353(6301), 753-754.
Bueno, G.W., Leonardo, A.F.G., Machado, L.P., Brande, M.R., Godoy, E.M., & David, F.S. (2020). Indicadores de sustentabilidade socioambiental de pisciculturas familiares em Área de Mata Atlântica, no Vale do Ribeira - SP. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(3), 901-910.
Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using satellite imagery to understand and promote sustainable development. Science, 371(6535).
Deng, J., Dong, W., Socher, R., Li, L-J., Kai, L., & Li F-F. (2009). ImageNet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, 248-255.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016) Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794.
Machicao, J., Specht, A., Vellenich, D., Meneguzzi, L., David, R., Stall, S., Ferraz, K., Mabile, L., O'Brien, M. & Corrêa, P. (2022). A Deep-Learning Method for the Prediction of Socio-Economic Indicators from Street-View Imagery Using a Case Study from Brazil. Data Science Journal, 21(1), p.6.
National Geophysical Data Center. (2010). Version 4 DMSP-OLS Nighttime Lights Time Series.
Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com
PNUD. Índice de Desenvolvimento Humano Municipal - IDHM: Metodologia. (2012). https://atlasbrasil.org.br/acervo/atlas
Simonyan, K.; Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/abs/1409.1556.
Suel, E., Polak, J.W., Bennett, J.E., & Ezzati, M. (2019). Measuring social, environmental and health inequalities using deep learning and street imagery. Scientific Reports, 9(1), 6229.
Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., & Burke, M. (2020). Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 11.