Modeling and Implementation of a Web Database for RNA-Seq of Bovine Embryonic Cells
Resumo
This paper aims to develop a dedicated RNA-Seq database for bovine embryos, generated to gain insights into reproductive metabolism. The data is categorized into three groups, each obtained from distinct experiments. The primary objective is to streamline data analysis through a platform, named TranscriptomicsSeqDB, which standardizes and organizes RNA-Seq information from the Laboratory of Embryonic Metabolism and Epigenetics at UFABC, São Paulo, Brazil. Apart from data storage and management, TranscriptomicsSeqDB provides a user-friendly search interface with predefined queries to facilitate gene-specific indicator analysis.
Referências
Chitwood, J. L., Rincon, G., Kaiser, G. G., Medrano, J. F., and Ross, P. J. (2013). Rna-seq analysis of single bovine blastocysts. BMC Genomics, 14:350.
Cánovas, A., Rincon, G., Islas-Trejo, A., Wickramasinghe, S., and Medrano, J. F. (2010). Snp discovery in the bovine milk transcriptome using rna-seq technology. Mammalian Genome, 21(11-12):592–598.
Danchin, A., Ouzounis, C., Tokuyasu, T., and Zucker, J.-D. (2018). No wisdom in the crowd: genome annotation in the era of big data – current status and future prospects. Microbial Biotechnology, 11(4):588–605.
Desai, N., Ploskonka, S., Goodman, L., Austin, C., Goldberg, J., and Falcone, T. (2014). Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol, 12:54.
Deshpande, D., Chhugani, K., Chang, Y., Karlsberg, A., Loeffler, C., Zhang, J., Muszyńska, A., Munteanu, V., Yang, H., Rotman, J., Tao, L., Balliu, B., Tseng, E., Eskin, E., Zhao, F., Mohammadi, P., P. Łabaj, P., and Mangul, S. (2023). Rna-seq data science: From raw data to effective interpretation. Frontiers in Genetics, 14.
Hrdlicková, R., Toloue, M., and Tian, B. (2016). Rna-seq methods for transcriptome analysis: Rna-seq. Wiley Interdisciplinary Reviews: RNA, 8.
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., and et al. (2013). The genotype-tissue expression (gtex) project. Nature Genetics, 45(6):580–585.
Milazzotto, M. P., Goissis, M. D., Chitwood, J. L., Annes, K., Soares, C. A., Ispada, J., Assumpção, M. E. O. , and Ross, P. J. (2016). Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol Reprod Dev., page 54.
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by rna-seq. Nature Methods, 5.
Perampalam, P. and Dick, F. A. (2020). Beavr: A browser-based tool for the exploration and visualization of rna-seq data. BMC Bioinformatics, 21(1).
Ullah, S., Rahman, W., Ullah, F., Ahmad, G., Ijaz, M., and Gao, T. (2022). Dbhr: a collection of databases relevant to human research. Future Science OA, 8(3):FSO780.
Villalba, G. C. and Matte, U. (2021). Fantastic databases and where to find them: Web applications for researchers in a rush. Genetics and Molecular Biology, 44(2):e20200203.
Xu, G., Strong, M. J., Lacey, M. R., Baribault, C., Flemington, E. K., and Taylor, C. M. (2014). Rna compass: A dual approach for pathogen and host transcriptome analysis of rna-seq datasets. PLoS ONE, 9(2).