Explicabilidade de LLMs usando Grafos de Ativação de Regiões Neurais (NRAGs)
Resumo
LLMs são atualmente tecnologias centrais para o desenvolvimento de aplicações de IA, atraindo interesse acadêmico e grandes investimentos na indústria. Apesar do sucesso e amplo uso dessas tecnologias, LLMs apresentam grandes desafios em termos de interpretabilidade – a complexidade dos modelos e a natureza de caixa-preta das redes neurais dificultam a compreensão dos mecanismos de geração das saídas. Este artigo apresenta os Grafos de Ativação de Regiões Neurais (NRAGs – do inglês Neural Region Activation Graphs), nova proposta para mecanismos de explicabilidade em LLMs. NRAGs são representações em grafo das ativações de um LLM estimuladas por um corpus. Os grafos gerados podem ser usados em tarefas como (i) entender as interconexões entre diferentes regiões do espaço multidimensional das camadas da rede, (ii) comparar subgrafos de ativações de textos de diferentes categorias, e (iii) comparar propriedades dos grafos induzidos por LLMs diferentes para um mesmo corpus. NRAGs são implementados na biblioteca LLM-MRI, que oferece diversos artefatos para o estudo de ativações em LLMs. Este artigo apresenta NRAGs como uma alternativa para a investigação científica de fenômenos complexos resultantes da inferência de LLMs, cobrindo a geração dos grafos a partir da biblioteca LLM-MRI e exemplos de aplicações em andamento.
Referências
Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems, volume 13. MIT Press.
Costa, L., Figênio, M., Santanchè, A., and Gomes-Jr, L. (2024). LLM-MRI python module: a brain scanner for llms. In Anais Estendidos do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 125–130, Porto Alegre, RS, Brasil. SBC.
Cunningham, H., Ewart, A., Riggs, L., Huben, R., and Sharkey, L. (2023). Sparse auto-encoders find highly interpretable features in language models.
Dalvi, F., Durrani, N., Sajjad, H., Belinkov, Y., Bau, A., and Glass, J. (2019). What is one grain of sand in the desert? analyzing individual neurons in deep nlp models. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6309–6317.
DeRose, J. F., Wang, J., and Berger, M. (2020). Attention flows: Analyzing and comparing attention mechanisms in language models.
Figênio, M., Santanché, A., and Gomes-Jr, L. (2024a). The impact of activation patterns in the explainability of large language models – a survey of recent advances. In Anais da XIX Escola Regional de Banco de Dados, pages 141–149, Porto Alegre, RS, Brasil. SBC.
Figênio, M. R. and Gomes-Jr, L. (2023). Ética na era dos modelos de linguagem massivos (llms): um estudo de caso do chatgpt. In Anais da XVIII Escola Regional de Banco de Dados (ERBD 2023), volume 0, page 100, Brasil.
Figênio, M. R., Santanché, A., and Gomes-Jr, L. (2024b). The impact of activation patterns in the explainability of large language models - a survey of recent advances. In Anais da XIX Escola Regional de Banco de Dados (ERBD 2024), page 141, Brasil.
Hiter, S. (2024). Top 20 generative ai tools and applications in 2024. Disponível em: [link].
Hoover, B., Strobelt, H., and Gehrmann, S. (2019). exbert: A visual analysis tool to explore learned representations in transformers models.
Horta, V. A., Tiddi, I., Little, S., and Mileo, A. (2021). Extracting knowledge from deep neural networks through graph analysis. Future Generation Computer Systems, 120:109–118.
L. da F. Costa, F. A. Rodrigues, G. T. and Boas, P. R. V. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167–242.
Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L., Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah, R., and Nanda, N. (2024). Gemma scope: Open sparse autoencoders everywhere all at once on gemma 2.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and Mian, A. (2024). A comprehensive overview of large language models.
Samek, W., Wiegand, T., and Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models.
Schmidt, H. G. and Rikers, R. M. J. P. (2007). How expertise develops in medicine: knowledge encapsulation and illness script formation. Medical Education, 41(12):1133–1139.
Tunstall, L., Von Werra, L., and Wolf, T. (2022). Natural language processing with transformers. ”O’Reilly Media, Inc.”.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
Zhang, B., He, Z., and Lin, H. (2024). A comprehensive review of deep neural network interpretation using topological data analysis. Neurocomputing, 609:128513.
Zhao, H., Chen, H., Yang, F., Liu, N., Deng, H., Cai, H., Wang, S., Yin, D., and Du, M. (2024a). Explainability for large language models: A survey. ACM Trans. Intell. Syst. Technol. Just Accepted.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. (2024b). A survey of large language models.
