Evaluation of Nature Inspired Metaheuristics for Search and Reconnaissance Operations by Rotary-wing Aircrafts

  • André Yokoyama LNCC
  • Antonio Mury UCP
  • Mariza Ferro LNCC
  • Bruno Schulze LNCC

Resumo


The main objective of this work is the evaluation of two nature inspired meta-heuristics, Genetic Algorithms and Ant Colony, for the development of an application that can generate optimized routes for aircraft, attending the requirements of the Brazilian Navy. This work presents the methods developed, complying with two main constraints: checkpoints mobility and limited aircraft autonomy. It also presents the results of tests performed with the methods developed and an evaluation of their performances.

Referências

Chatterjee, S., Carrera, C., and Lynch, L. (1996). Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3):490–510.

Hassan, M. R., Hasan, M. K., and Hashem, M. M. A. (2013). An improved acs algorithm for the solutions of larger tsp problems. CoRR, abs/1304.3763.

Li, B., Wang, L., and Song, W. (2008). Ant colony optimization for the ts problem based on ants with memory. In 4th International Conference on Natural Computation. IEEE.

Wiesebron, M. (2013). Amazônia azul: Pensando a defesa do territorio marítimo brasileiro. Rev. Brasileira de Estratégia e Relações Internacionais, 2(3):107 – 131.

Yang, J., Shi, X., Marchese, M., and Liang, Y. (2008). An ant colony optimization method for generalized tsp problem. Progress in Natural Science, 18(11):1417 – 1422.

Yokoyama, A. M. (2016). Avaliação do uso de meta-heurísticas baseadas no comportamento da natureza em apoio a operações de esclarecimento por aeronaves de asa móvel. Master’s thesis, Laboratório Nacional de Computação Científica. http://comcidis.lncc.br/downloads/dissertacao/mestrado/tIw2DDb3WqS.pdf.
Publicado
22/07/2017
YOKOYAMA, André; MURY, Antonio; FERRO, Mariza; SCHULZE, Bruno. Evaluation of Nature Inspired Metaheuristics for Search and Reconnaissance Operations by Rotary-wing Aircrafts. In: BRAZILIAN E-SCIENCE WORKSHOP (BRESCI), 11. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 21-28. ISSN 2763-8774. DOI: https://doi.org/10.5753/bresci.2017.9918.