Block Interchange and Reversal Distance on Unbalanced Genomes

  • Alexsandro Oliveira Alexandrino UNICAMP
  • Gabriel Siqueira UNICAMP
  • Klairton Lima Brito UNICAMP
  • Andre Rodrigues Oliveira Mackenzie
  • Ulisses Dias UNICAMP
  • Zanoni Dias UNICAMP

Resumo


One method for inferring the evolutionary distance between two organisms is to find the rearrangement distance, which is defined as the minimum number of genome rearrangements required to transform one genome into the other. Rearrangements that do not alter the genome content are known as conservative. Examples of such rearrangements include: reversal, which reverts a segment of the genome; transposition, which exchanges two consecutive blocks; block interchange (BI), which exchanges two blocks at any position in the genome; and double cut and join (DCJ), which cuts two different pairs of adjacent blocks and joins them in a different manner. Initially, works in this area involved comparing genomes that shared the same set of conserved blocks. Nowadays, researchers are investigating unbalanced genomes (genomes with a distinct set of genes), which requires the use of non-conservative rearrangements such as insertions and deletions (indels). In cases where there are no repeated blocks and the genomes have the same set of blocks, the BI Distance and the Reversal Distance have polynomial-time algorithms, while the complexity of the BI and Reversal Distance problem remains unknown. In this study, we investigate the BI and Indel Distance and the BI, Reversal, and Indel Distance on genomes with different gene content and no repeated genes. We present 2-approximation algorithms for each problem using a variant of the breakpoint graph structure.

Palavras-chave: Block Interchange, Reversal, Unbalanced Genomes

Referências

Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Genome rearrangement distance with reversals, transpositions, and indels. J. Comput. Biol. 28(3), 235–247 (2021)

Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Labeled cycle graph for transposition and indel distance. J. Comput. Biol. 29(03), 243–256 (2022)

Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2), 224–240 (1998)

Braga, M.D., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–1184 (2011)

Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discret. Math. 26(3), 1148–1180 (2012)

Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions. SIAM J. Discret. Math. 12(1), 91–110 (1999)

Chen, X.: On sorting permutations by double-cut-and-joins. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 439–448. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14031-0_47

Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)

El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_20

Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of Genome Rearrangements. Computational Molecular Biology. The MIT Press, London (2009)

Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)

Willing, E., Stoye, J., Braga, M.: Computing the inversion-indel distance. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2314–2326 (2021)

Willing, E., Stoye, J., Braga, M.D.: Computing the inversion-indel distance. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2314–2326 (2020)

Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)
Publicado
13/06/2023
Como Citar

Selecione um Formato
ALEXANDRINO, Alexsandro Oliveira; SIQUEIRA, Gabriel; BRITO, Klairton Lima; OLIVEIRA, Andre Rodrigues; DIAS, Ulisses; DIAS, Zanoni. Block Interchange and Reversal Distance on Unbalanced Genomes. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 16. , 2023, Curitiba/PR. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1-13. ISSN 2316-1248.