Scaling Up ESM2 Architectures for Long Protein Sequences Analysis: Long and Quantized Approaches

  • Gabriel Bianchin de Oliveira UNICAMP
  • Helio Pedrini UNICAMP
  • Zanoni Dias UNICAMP

Resumo


Various approaches utilizing Transformer architectures have achieved state-of-the-art results in Natural Language Processing (NLP). Based on this success, numerous architectures have been proposed for other types of data, such as in biology, particularly for protein sequences. Notably among these are the ESM2 architectures, pre-trained on billions of proteins, which form the basis of various state-of-the-art approaches in the field. However, the ESM2 architectures have a limitation regarding input size, restricting it to 1,022 amino acids, which necessitates the use of preprocessing techniques to handle sequences longer than this limit. In this paper, we present the long and quantized versions of the ESM2 architectures, doubling the input size limit to 2,048 amino acids.

Referências

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., Cowen-Rivers, A. I., Cowie, A., Figurnov, M., Fuchs, F. B., Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R., Perlin, K., Potapenko, A., Savy, P., Singh, S., Stecula, A., Thillaisundaram, A., Tong, C., Yakneen, S., Zhong, E. D., Zielinski, M., Žídek, A., Bapst, V., Kohli, P., Jaderberg, M., Hassabis, D., and Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, pages 1–3.

Ao, J., Wang, R., Zhou, L., Wang, C., Ren, S., Wu, Y., Liu, S., Ko, T., Li, Q., Zhang, Y., Wei, Z., Qian, Y., Li, J., and Wei, F. (2021). SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing. arXiv:2110.07205, pages 1–16.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., and Schmid, C. (2021). ViViT: A Video Vision Transformer. In IEEE/CVF International Conference on Computer Vision (ICCV), pages 6836–6846.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000). Gene Ontology: Tool for the Unification of Biology. Nature Genetics, 25(1):25–29.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document transformer. arXiv:2004.05150, pages 1–17.

Cao, Y. and Shen, Y. (2021). TALE: Transformer-based protein function Annotation with joint sequence–Label Embedding. Bioinformatics, 37(18):2825–2833.

Chua, Z. M., Rajesh, A., Sinha, S., and Adams, P. D. (2024). PROTGOAT: Improved automated protein function predictions using Protein Language Models. bioRxiv, pages 1–15.

Dettmers, T. and Zettlemoyer, L. (2023). The case for 4-bit precision: k-bit Inference Scaling Laws. In 40th International Conference on Machine Learning (ICML), pages 7750–7774.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929, pages 1–22.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., Bhowmik, D., and Rost, B. (2021). ProtTrans: Toward understanding the language of life through self-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):7112–7127.

Friedberg, I., Radivojac, P., Paolis, C. D., Piovesan, D., Joshi, P., Reade, W., and Howard, A. (2023). CAFA 5 Protein Function Prediction.

Jin, H., Chollet, F., Song, Q., and Hu, X. (2023). AutoKeras: An AutoML Library for Deep Learning. Journal of Machine Learning Research, 24(6):1–6.

Kulmanov, M. and Hoehndorf, R. (2019). DeepGOPlus: Improved Protein Function Prediction from Sequence. Bioinformatics, 36(2):422–429.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., Costa, A. d. S., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. (2023). Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Nodel. Science, 379(6637):1123–1130.

Loshchilov, I. and Hutter, F. (2017). Decoupled Weight Decay Regularization. arXiv:1711.05101, pages 1–19.

Oliveira, G. B., Pedrini, H., and Dias, Z. (2023). TEMPROT: Protein Function Annotation using Transformers Embeddings and Homology Search. BMC Bioinformatics, 24(1):1–16.

Oliveira, G. B., Pedrini, H., and Dias, Z. (2024). Integrating Transformers and AutoML for Protein Function Prediction. In 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1–5. IEEE.

Radivojac, P. (2013). A (not so) quick introduction to protein function prediction. Indiana University, USA.

The UniProt Consortium (2023). UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1):D523–D531.

Valentini, G. (2010). True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(3):832–847.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In 30th Advances in Neural Information Processing Systems (NeurIPS), pages 5998–6008.

Vitale, R., Bugnon, L. A., Fenoy, E. L., Milone, D. H., and Stegmayer, G. (2024). Evaluating large language models for annotating proteins. Briefings in Bioinformatics, 25(3):bbae177.

Yeung, W., Zhou, Z., Li, S., and Kannan, N. (2023). Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings. Briefings in Bioinformatics, 24(1):bbac599.

Yu, Y., Yang, C.-H. H., Kolehmainen, J., Shivakumar, P. G., Gu, Y., Ren, S. R. R., Luo, Q., Gourav, A., Chen, I.-F., Liu, Y.-C., Dinh, T., Gandhe, A., Filimonov, D., Ghosh, S., Stolcke, A., Rastow, A., and Bulyko, I. (2023). Low-rank adaptation of large language model rescoring for parameter-efficient speech recognition. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages 1–8. IEEE.

Zhapa-Camacho, F., Tang, Z., Kulmanov, M., and Hoehndorf, R. (2024). Predicting protein functions using positive-unlabeled ranking with ontology-based priors. bioRxiv, pages 1–9.

Zhou, N., Jiang, Y., Bergquist, T. R., Lee, A. J., Kacsoh, B. Z., Crocker, A. W., Lewis, K. A., Georghiou, G., Nguyen, H. N., Hamid, M. N., Davis, L., Dogan, T., Atalay, V., Rifaioglu, A. S., Dalkıran, A., Cetin Atalay, R., Zhang, C., Hurto, R. L., Freddolino, P. L., Zhang, Y., Bhat, P., Supek, F., Fernández, J. M., Gemovic, B., Perovic, V. R., Davidović, R. S., Sumonja, N., Veljkovic, N., Asgari, E., Mofrad, M. R., Profiti, G., Savojardo, C., Martelli, P. L., Casadio, R., Boecker, F., Schoof, H., Kahanda, I., Thurlby, N., McHardy, A. C., Renaux, A., Saidi, R., Gough, J., Freitas, A. A., Antczak, M., Fabris, F., Wass, M. N., Hou, J., Cheng, J., Wang, Z., Romero, A. E., Paccanaro, A., Yang, H., Goldberg, T., Zhao, C., Holm, L., Törönen, P., Medlar, A. J., Zosa, E., Borukhov, I., Novikov, I., Wilkins, A., Lichtarge, O., Chi, P.-H., Tseng, W.-C., Linial, M., Rose, P. W., Dessimoz, C., Vidulin, V., Dzeroski, S., Sillitoe, I., Das, S., Lees, J. G., Jones, D. T., Wan, C., Cozzetto, D., Fa, R., Torres, M., Warwick Vesztrocy, A., Rodriguez, J. M., Tress, M. L., Frasca, M., Notaro, M., Grossi, G., Petrini, A., Re, M., Valentini, G., Mesiti, M., Roche, D. B., Reeb, J., Ritchie, D. W., Aridhi, S., Alborzi, S. Z., Devignes, M.-D., Koo, D. C. E., Bonneau, R., Gligorijević, V., Barot, M., Fang, H., Toppo, S., Lavezzo, E., Falda, M., Berselli, M., Tosatto, S. C., Carraro, M., Piovesan, D., Ur Rehman, H., Mao, Q., Zhang, S., Vucetic, S., Black, G. S., Jo, D., Suh, E., Dayton, J. B., Larsen, D. J., Omdahl, A. R., McGuffin, L. J., Brackenridge, D. A., Babbitt, P. C., Yunes, J. M., Fontana, P., Zhang, F., Zhu, S., You, R., Zhang, Z., Dai, S., Yao, S., Tian, W., Cao, R., Chandler, C., Amezola, M., Johnson, D., Chang, J.-M., Liao, W.-H., Liu, Y.-W., Pascarelli, S., Frank, Y., Hoehndorf, R., Kulmanov, M., Boudellioua, I., Politano, G., Di Carlo, S., Benso, A., Hakala, K., Ginter, F., Mehryary, F., Kaewphan, S., Björne, J., Moen, H., Tolvanen, M. E., Salakoski, T., Kihara, D., Jain, A., Šmuc, T., Altenhoff, A., Ben-Hur, A., Rost, B., Brenner, S. E., Orengo, C. A., Jeffery, C. J., Bosco, G., Hogan, D. A., Martin, M. J., O’Donovan, C., Mooney, S. D., Greene, C. S., Radivojac, P., and Friedberg, I. (2019). The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 20(1):244.

Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R., and Liu, H. (2023). DNABERT-2: Efficient foundation model and benchmark for multi-species genomes. arXiv:2306.15006, pages 1–23.

Zhu, Y.-H., Zhang, C., Yu, D.-J., and Zhang, Y. (2022). Integrating Unsupervised Language Model with Triplet Neural Networks for Protein Gene Ontology Prediction. PLoS Computational Biology, 18(12):e1010793.
Publicado
02/12/2024
OLIVEIRA, Gabriel Bianchin de; PEDRINI, Helio; DIAS, Zanoni. Scaling Up ESM2 Architectures for Long Protein Sequences Analysis: Long and Quantized Approaches. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 17. , 2024, Vitória/ES. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 1-11. ISSN 2316-1248. DOI: https://doi.org/10.5753/bsb.2024.244804.