Using graph-based structural signatures and machine learning algorithms for molecular docking assessment of histone deacetylases and small ligands
Resumo
Histone deacetylases (HDACs) are enzymes that play an essential role in regulating gene expression, with recent studies linking their inhibition to autism spectrum disorders (ASD). As a result, there is growing interest in understanding the effects of HDAC inhibition. In this paper, we used molecular docking to investigate the binding between HDACs and small ligands, focusing on two enzymes involved in embryonic development: Histone deacetylase 1 (H1) and Histone deacetylase 2 (H2). Using a graph-based structural signature algorithm, we extracted features from the resulting complexes and employed machine learning algorithms to distinguish natural ligands from decoys, achieving 72% of accuracy in the classification test.Referências
Drakontaeidi, A. and Pontiki, E. (2023). A review on molecular docking on hdac isoforms: Novel tool for designing selective inhibitors. Pharmaceuticals, 16(12):1639. DOI: 10.3390/ph16121639.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of chem-informatics, 4:1–17.
Lauffer, B. E., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B., Ritscher, A., Fedorowicz, G., Vallero, R., et al. (2013). Histone deacetylase (hdac) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. Journal of Biological Chemistry, 288(37):26926–26943.
Maenner, M. J. et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network. MMWR. Surveillance Summaries, 69(4):1–12. DOI: 10.15585/mmwr.ss6904a1.
Mariano, D., Santos, L., Machado, K., Werhli, A., de Lima, L., and de Melo-Minardi, R. (2019). A computational method to propose mutations in enzymes based on structural signature variation (ssv). International journal of molecular sciences, 20(2):333.
Martins, P., Mariano, D., Carvalho, F. C., Bastos, L., Moraes, L., Paixão, V., and de Melo-Minardi, R. (2023). Propedia v2.3: A novel representation approach for the peptide-protein interaction database using graph-based structural signatures. Frontiers in Bioinformatics, 3:1103103.
Millard, C. J., Watson, P. J., Celardo, I., Gordiyenko, Y., Cowley, S. M., Robinson, C. V., Fairall, L., and Schwabe, J. W. (2013). Class i hdacs share a common mechanism of regulation by inositol phosphates. Molecular cell, 51(1):57–67.
Moreira, E. U., Mariano, D. C., and de Melo-Minardi, R. C. (2024). Computational analysis of mutations in sars-cov-2 variants spike protein and protein interactions. In Features, Transmission, Detection, and Case Studies in COVID-19, pages 123–139. Elsevier.
Pires, D. E. V. et al. (2013). acsm: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics, 29(7):855–861. DOI: 10.1093/bioinformatics/btt058.
Santos-Martins, D. et al. (2014). Autodock4zn: An improved autodock force field for small-molecule docking to zinc metalloproteins. Journal of Chemical Information and Modeling, 54(8):2371–2379. DOI: 10.1021/ci500209e.
Saxena, R. et al. (2020). Role of environmental factors and epigenetics in autism spectrum disorders, page 35–60. Elsevier. DOI: 10.1016/bs.pmbts.2020.05.002.
Schiavi, S. et al. (2019). Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Frontiers in Cellular Neuroscience, 13. DOI: 10.3389/fncel.2019.00479.
Sixto-López, Y. et al. (2020). Exploring the inhibitory activity of valproic acid against the hdac family using na mmgbsa approach. J Comput Aided Mol Des., 34(8):85–878. DOI: 10.1007/s10822-020-00304-2.
Tao, H. N. and Cheng, H. Y. (2020). Docking belinostat into hdac 8 using autodock tool. Can Tho University Journal of Science, 12(2):1–8. DOI: 10.22144/ctu.jen.2020.009.
Tartaglione, A. M. et al. (2019). Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autismo spectrum disorder. Neuropharmacology, 159:107477. DOI: 10.1016/j.neuropharm.2018.12.024.
Wang, D. et al. (2005). Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class i histone deacetylases. Journal Medicinal Chemistry, 48(22):6936–6947. DOI: 10.1021/jm0505011.
Waye, M. M. Y. and Cheng, H. Y. (2017). Genetics and epigenetics of autism: A review. Psychiatry and Clinical Neurosciences, 72(4):228–244. DOI: 10.1111/pcn.12606.
Xia, J. et al. (2015). Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families. Journal of Chemical Information and Modeling, 55(2):374–388. DOI: 10.1021/ci5005515.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of chem-informatics, 4:1–17.
Lauffer, B. E., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B., Ritscher, A., Fedorowicz, G., Vallero, R., et al. (2013). Histone deacetylase (hdac) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. Journal of Biological Chemistry, 288(37):26926–26943.
Maenner, M. J. et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network. MMWR. Surveillance Summaries, 69(4):1–12. DOI: 10.15585/mmwr.ss6904a1.
Mariano, D., Santos, L., Machado, K., Werhli, A., de Lima, L., and de Melo-Minardi, R. (2019). A computational method to propose mutations in enzymes based on structural signature variation (ssv). International journal of molecular sciences, 20(2):333.
Martins, P., Mariano, D., Carvalho, F. C., Bastos, L., Moraes, L., Paixão, V., and de Melo-Minardi, R. (2023). Propedia v2.3: A novel representation approach for the peptide-protein interaction database using graph-based structural signatures. Frontiers in Bioinformatics, 3:1103103.
Millard, C. J., Watson, P. J., Celardo, I., Gordiyenko, Y., Cowley, S. M., Robinson, C. V., Fairall, L., and Schwabe, J. W. (2013). Class i hdacs share a common mechanism of regulation by inositol phosphates. Molecular cell, 51(1):57–67.
Moreira, E. U., Mariano, D. C., and de Melo-Minardi, R. C. (2024). Computational analysis of mutations in sars-cov-2 variants spike protein and protein interactions. In Features, Transmission, Detection, and Case Studies in COVID-19, pages 123–139. Elsevier.
Pires, D. E. V. et al. (2013). acsm: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics, 29(7):855–861. DOI: 10.1093/bioinformatics/btt058.
Santos-Martins, D. et al. (2014). Autodock4zn: An improved autodock force field for small-molecule docking to zinc metalloproteins. Journal of Chemical Information and Modeling, 54(8):2371–2379. DOI: 10.1021/ci500209e.
Saxena, R. et al. (2020). Role of environmental factors and epigenetics in autism spectrum disorders, page 35–60. Elsevier. DOI: 10.1016/bs.pmbts.2020.05.002.
Schiavi, S. et al. (2019). Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Frontiers in Cellular Neuroscience, 13. DOI: 10.3389/fncel.2019.00479.
Sixto-López, Y. et al. (2020). Exploring the inhibitory activity of valproic acid against the hdac family using na mmgbsa approach. J Comput Aided Mol Des., 34(8):85–878. DOI: 10.1007/s10822-020-00304-2.
Tao, H. N. and Cheng, H. Y. (2020). Docking belinostat into hdac 8 using autodock tool. Can Tho University Journal of Science, 12(2):1–8. DOI: 10.22144/ctu.jen.2020.009.
Tartaglione, A. M. et al. (2019). Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autismo spectrum disorder. Neuropharmacology, 159:107477. DOI: 10.1016/j.neuropharm.2018.12.024.
Wang, D. et al. (2005). Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class i histone deacetylases. Journal Medicinal Chemistry, 48(22):6936–6947. DOI: 10.1021/jm0505011.
Waye, M. M. Y. and Cheng, H. Y. (2017). Genetics and epigenetics of autism: A review. Psychiatry and Clinical Neurosciences, 72(4):228–244. DOI: 10.1111/pcn.12606.
Xia, J. et al. (2015). Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families. Journal of Chemical Information and Modeling, 55(2):374–388. DOI: 10.1021/ci5005515.
Publicado
02/12/2024
Como Citar
CIOLETTI, Alessandra G.; LEMOS, Rafael P.; SANTOS, Lucas M. dos; MARIANO, Diego; MELO-MINARDI, Raquel C. de.
Using graph-based structural signatures and machine learning algorithms for molecular docking assessment of histone deacetylases and small ligands. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 17. , 2024, Vitória/ES.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 223-234.
ISSN 2316-1248.
DOI: https://doi.org/10.5753/bsb.2024.245612.