Modelo de Características Extendido para Sistemas Híbridos (Cuántico-Clásicos)

  • Samuel Sepúlveda UFRO
  • Ricardo Pérez-Castillo UCLM
  • Mario Piattini UCLM

Resumo


La computación cuántica (CQ) y la ingeniería de software cuántico (ISC), enfrentan desafíos debido a la diversidad de algoritmos, lenguajes y estrategias de integración. Este trabajo propone un modelo para el desarrollo de software híbrido cuántico-clásico, siguiendo un enfoque de Líneas de Producto de Software. A partir de un modelo previo y una búsqueda de la literatura, se identificaron componentes esenciales y se estructuraron en una jerarquía para representar la variabilidad en estos sistemas. El modelo resultante facilita la gestión de variabilidad y configuración de arquitecturas híbridas, estableciendo las bases para futuras evaluaciones y refinamientos, contribuyendo a una metodología más efectiva para la integración de CQ e ISC.

Palavras-chave: Computación Cuántica, Ingeniería de Software Cuántico, Modelo de Características, Taxonomía, Integración Cuántico-Clásica

Referências

Ahmad, A., Altamimi, A. B., and Aqib, J. (2024). A reference architecture for quantumcomputing as a service. Journal of King Saud University - Computer and Information Sciences, 36(6):102094.

Ahmad, A., Khan, A. A., Waseem, M., Fahmideh, M., and Mikkonen, T. (2022). Towards process centered architecting for quantum software systems. In 2022 IEEE international conference on quantum software (QSW), pages 26–31. IEEE.

Ahmad, A., Waseem, M., Liang, P., Fehmideh, M., Khan, A. A., Reichelt, D. G., and Mikkonen, T. (2023). Engineering software systems for quantum computing as a service: A mapping study. arXiv preprint arXiv:2303.14713.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A literature review. Information systems, 35(6):615–636.

Benavides, D., Sundermann, C., Feichtinger, K., Galindo, J. A., Rabiser, R., and Thüm, T. (2024). Uvl: Feature modelling with the universal variability language. SSRN.

Bisicchia, G., Garcia-Alonso, J., Murillo, J. M., and Brogi, A. (2024). From quantum mechanics to quantum software engineering. arXiv preprint arXiv:2404.19428.

Cai, Z., Babbush, R., Benjamin, S. C., Endo, S., Huggins, W. J., Li, Y., McClean, J. R., and O’Brien, T. E. (2023). Quantum error mitigation. Rev. Mod. Phys., 95:045005.

Carbonelli, C., Felderer, M., Jung, M., Lobe, E., Lochau, M., Luber, S., Mauerer, W., Ramler, R., Schaefer, I., and Schroth, C. (2024). Challenges for quantum software engineering: An industrial application scenario perspective. In Quantum Software: Aspects of Theory and System Design, pages 311–335. Springer.

Cares, C., Lühr, D., Mora, S., Navarro, C., Olivares, L., Sepúlveda, S., and Vidal, G. (2022). Architecting autonomous underwater vehicles by adapting software product lines. In Conference on Integrated Computer Technologies in Mechanical Engineering– Synergetic Engineering, pages 719–730. Springer.

Carleton, A. D., Harper, E., Robert, J. E., Klein, M. H., De Niz, D., Desautels, E., Goodenough, J. B., Holland, C., Ozkaya, I., and Schmidt, D. (2021). Architecting the future of software engineering: A national agenda for software engineering research and development. Report, Software Engineering Institute, Carnegie Mellon University.

Chancellor, N., Cumming, R., and Thomas, T. (2020). Toward a standardized methodology for constructing quantum computing use cases. ArXiv preprint. [link]

Chen, Z. and Rengaswamy, N. (2024). Tailoring fault-tolerance to quantum algorithms.

Czarnik, P., Arrasmith, A., Coles, P. J., and Cincio, L. (2021). Error mitigation with Clifford quantum-circuit data. Quantum, 5:592.

De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., and De Lucia, A. (2024). The quantum frontier of software engineering: A systematic mapping study. Information and Software Technology, page 107525.

Exman, I., Pérez-Castillo, R., Piattini, M., and Felderer, M. (2024). Quantum Software: Aspects of Theory and System Design. Springer Nature.

Ezratty, O. (2024). Understanding quantum technologies 2024.

Fadhlillah, H. S. and Rabiser, R. (2024). Towards a product configuration representation for the universal variability language. In Proceedings of the 28th ACM International Systems and Software Product Line Conference, pages 50–54.

Faro, I., Sitdikov, I., Valiñas, D. G., Fernandez, F. J. M., Codella, C., and Glick, J. (2023). Middleware for quantum: An orchestration of hybrid quantum-classical systems. In 2023 IEEE International Conference on Quantum Software (QSW), pages 1–8. IEEE.

Ferrara, R., Bassoli, R., Deppe, C., Fitzek, F. H., and Boche, H. (2021). The computational and latency advantage of quantum communication networks. IEEE Communications Magazine, 59(6):132–137.

Galindo, J. A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.-M., and Ruiz-Cortés, A. (2019). Automated analysis of feature models: Quo vadis? Computing, 101:387–433.

Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., and Murillo, J. M. (2021). Quantum software as a service through a quantum api gateway. IEEE Internet Computing, 26(1):34–41.

Grange, C., Poss, M., and Bourreau, E. (2023). An introduction to variational quantum algorithms for combinatorial optimization problems. 4OR, 21(3):363–403.

Heim, B., Soeken, M., Marshall, S., Granade, C., Roetteler, M., Geller, A., Troyer, M., and Svore, K. (2020). Quantum programming languages. Nature Reviews Physics, 2(12):709–722.

Hevia, J. L., Peterssen, G., and Piattini, M. (2024). qsoa®: Dynamic integration for hybrid quantum/classical software systems. Journal of Systems and Software, 214:112061.

Kahn, J. (2020). D-wave unveils its most powerful quantum computer to date. [link]. Accessed on January 25, 2025.

K.S., J. and Gowda, S. (2023). Quantum network for quantum communication. In 2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), pages 1–5.

LaRose, R. (2019). Overview and Comparison of Gate Level Quantum Software Platforms. Quantum, 3:130.

McGeoch, C. C. (2020). Theory versus practice in annealing-based quantum computing. Theoretical Computer Science, 816:169–183.

Nadim, M., Hassan, M., Mandal, A. K., and Roy, C. K. (2024). Quantum vs. classical machine learning algorithms for software defect prediction: Challenges and opportunities. ArXiv preprint. [link]

Nielsen, M. A. and Chuang, I. L. (2001). Quantum computation and quantum information, volume 2. Cambridge university press Cambridge.

Pendenti, H., Yepez, L. P., Castillo, R. P., Alegría, J. A. H., Antonelli, L., and Fernandez, A. (2024). ¿qué tiene de especial la ingeniería de requisitos para los sistemas cuántico-clásicos? Memoria Investigaciones en Ingeniería, 1(27):257–265.

Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J. L., Serrano, M. A., Hernández, G., De Guzmán, I. G. R., Paradela, C. A., Polo, M., Murina, E., et al. (2020). The talavera manifesto for quantum software engineering and programming. In QANSWER, pages 1–5.

Pérez-Castillo, R., Serrano, M. A., and Piattini, M. (2021). Software modernization to embrace quantum technology. Advances in Engineering Software, 151:102933.

Qi, H., Xiao, S., Liu, Z., Gong, C., and Gani, A. (2024). Variational quantum algorithms: fundamental concepts, applications and challenges. Quantum Information Processing, 23(6):224.

Rabiser, R. (2024). Industry adoption of uvl: What we will need. In Proceedings of the 28th ACM International Systems and Software Product Line Conference, pages 46–49.

Rojo, J., Valencia, D., Berrocal, J., Moguel, E., Garcia-Alonso, J., and Rodriguez, J. M. M. (2021). Trials and tribulations of developing hybrid quantum-classical microservices systems. arXiv preprint arXiv:2105.04421.

Safdar, S. A., Yue, T., Ali, S., and Lu, H. (2016). Evaluating variability modeling techniques for supporting cyber-physical system product line engineering. In System Analysis and Modeling. Technology-Specific Aspects of Models: 9th International Conference, SAM 2016, Saint-Melo, France, October 3-4, 2016, pages 1–19. Springer.

Salam, M. and Ilyas, M. (2024). Quantum computing challenges and solutions in software industry—a multivocal literature review. IET Quantum Communication.

Salm, M., Barzen, J., Leymann, F., Weder, B., and Wild, K. (2021). Automating the Comparison of Quantum Compilers for Quantum Circuits. In Proceedings of the 15th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2021), pages 64–80. Springer International Publishing.

Schönberger, M., Franz, M., Scherzinger, S., and Mauerer, W. (2022). Peel | pile? cross-framework portability of quantum software.

Sekavčnik, S. and Nötzel, J. (2022). Effects of quantum communication in large-scale networks at minimum latency. In 2022 IEEE Globecom Workshops (GC Wkshps), pages 802–807.

Sepúlveda, S., Pérez-Castillo, R., and Piattini, M. (2025). A software product line approach for developing hybrid software systems. Information and Software Technology, 178:107625.

Sepúlveda, S., Piattini, M., and Pérez Del Castillo, R. (2024). Developing hybrid quantum-classical software: a software product line approach. In Proceedings of the 5th ACM/IEEE International Workshop on Quantum Software Engineering (Q-SE), page 37–40, New York, USA. ACM.

Sepúlveda, S., Perez-Castillo, R., and Piattini, M. (2025). Feature model hqc-spl cib-se2025. DOI: 10.5281/zenodo.15013631.

Serrano, M. A., Pérez-Castillo, R., and Piattini, M. (2022). Quantum software engineering. Springer.

Stirbu, V. and Mikkonen, T. (2023). Software architecture challenges in integrating hybrid classical-quantum systems. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), volume 2, pages 203–204. IEEE.

Zhao, J. (2021). Quantum software engineering: Landscapes and horizons. ArXiv preprint. [link]
Publicado
12/05/2025
SEPÚLVEDA, Samuel; PÉREZ-CASTILLO, Ricardo; PIATTINI, Mario. Modelo de Características Extendido para Sistemas Híbridos (Cuántico-Clásicos). In: CONGRESSO IBERO-AMERICANO EM ENGENHARIA DE SOFTWARE (CIBSE), 28. , 2025, Ciudad Real/Espanha. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 60-74. DOI: https://doi.org/10.5753/cibse.2025.35292.