Hacia el desarrollo de un modelo adaptativo para gestionar la deuda social en entornos de desarrollo de software ágil distribuido
Resumo
La desalineación de la congruencia sociotécnica en equipos de desarrollo de software, entendida como la desarticulación entre factores sociales y técnicos, puede generar decisiones subóptimas que conllevan a costos imprevistos dando origen al concepto de deuda social. Mediante una revisión sistemática de la literatura, se identificaron soluciones para detectar la deuda social; sin embargo, estas propuestas operan de forma independiente. Por ello, se propone el desarrollo de un modelo adaptativo para gestionarla en equipos ágiles distribuidos, integrando causas, efectos y estrategias. El modelo se sustenta en un enfoque de Investigación-Acción estructurado en cuatro ciclos.
Referências
Almarimi, N. et al. (2022) ‘Improving the detection of community smells through socio‐technical and sentiment analysis’, Journal of Software: Evolution and Process, 35. DOI: 10.1002/smr.2505
Anwar, R. et al. (2019) ‘Investigation of Knowledge Sharing Behavior in Global Software Development Organizations Using Social Cognitive Theory’, IEEE Access, 7, pp. 71286–71298. DOI: 10.1109/ACCESS.2019.2912657
Caballero-Espinosa, E., Carver, J.C. and Stowers, K. (2023) ‘Community smells—The sources of social debt: A systematic literature review’, Information and Software Technology, 153. DOI: 10.1016/J.INFSOF.2022.107078
de Campos, A. et al. (2024) ‘Some things never change: how far generative AI can really change software engineering practice’. [link]
Catolino, G. et al. (2021) ‘Understanding Community Smells Variability: A Statistical Approach’, Proceedings - International Conference on Software Engineering, 2021-May, pp. 77–86. DOI: 10.1109/ICSE-SEIS52602.2021.00017
Dreesen, T. et al. (2021) ‘The second vice is lying, the first is running into debt. Antecedents and mitigating practices of social debt: An exploratory study in distributed software development teams’, Proceedings of the Annual Hawaii International Conference on System Sciences, 2020-Janua, pp. 6826–6835. DOI: 10.24251/hicss.2021.818
García, G.D., Pardo Calvache, C.J. and Rodríguez, F.J.A. (2022) ‘Society 5.0 and Soft Skills in Agile Global Software Development’, Revista Iberoamericana de Tecnologías del Aprendizaje, 17(2), pp. 197–207. DOI: 10.1109/RITA.2022.3166966
Gote, C. et al. (2023) ‘Locating community smells in software development processes using higher-order network centralities’, Social Network Analysis and Mining, 13(1), pp. 1–28. DOI: 10.1007/s13278-023-01120-w
Khan, R.A. et al. (2019) ‘An Evaluation Framework for Communication and Coordination Processes in Offshore Software Development Outsourcing Relationship: Using Fuzzy Methods’, IEEE Access, 7, pp. 112879–112906. DOI: 10.1109/ACCESS.2019.2924404
Lambiase, S. et al. (2022) ‘Good fences make good neighbours?’, in. Association for Computing Machinery (ACM), pp. 67–78. DOI: 10.1145/3510458.3513015
Lambiase, S. (2024) ‘Cultural and Socio-Technical Aspects in Software Development’, in ACM International Conference Proceeding Series. Association for Computing Machinery, pp. 482–487. DOI: 10.1145/3661167.3661230
Organización Internacional del Trabajo. 2013. La Organización Del Trabajo y Los Riesgos Psicosociales: Una Mirada de Género. San José.
Palomba, F. et al. (2021) ‘Beyond Technical Aspects: How Do Community Smells Influence the Intensity of Code Smells?’, IEEE Transactions on Software Engineering, 47(1), pp. 108–129. DOI: 10.1109/TSE.2018.2883603
Pantaleo, Guillermo. and Rinaudo, L. (2015) Ingeniería de software. 1st edn. Edited by Alfaomega. Ciudad Autónoma de Buenos Aires: Alfaomega Grupo Editor Argentino.
Saeeda, H., Ovais Ahamd, M. and Gustavsson, T. (2024) ‘A Multivocal Literature Review on Non-Technical Debt in Software Development: An Insight into Process, Social, People, Organizational, and Culture Debt’, e-Informatica Software Engineering Journal, 18(1), pp. 240101. DOI: 10.37190/e-inf240101
State of Agile (2023) The 17th State of Agile Report 17th State of Agile. Raleigh, NC.
Tamburri, D.A. et al. (2013) ‘What is social debt in software engineering?’, in 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2013 - Proceedings, pp. 93–96. DOI: 10.1109/CHASE.2013.6614739
Tamburri, D.A. et al. (2015) ‘Social debt in software engineering: insights from industry’, Journal of Internet Services and Applications, 6(1). DOI: 10.1186/s13174-015-0024-6
Tamburri, D.A. et al. (2019) ‘Discovering community patterns in open-source: a systematic approach and its evaluation’, Empirical Software Engineering, 24(3), pp. 1369–1417. DOI: 10.1007/s10664-018-9659-9
Terragni, V. et al. (2025) ‘The Future of AI-Driven Software Engineering’, ACM Transactions on Software Engineering and Methodology [Preprint]. DOI: 10.1145/3715003
Wieringa, R. et al. (2006) ‘Requirements engineering paper classification and evaluation criteria: A proposal and a discussion’, Requirements Engineering, 11(1), pp. 102–107. DOI: 10.1007/s00766-005-0021-6
Yilmaz, Murat, Rory V. O’Connor, and Paul Clarke. 2016. ‘Effective Social Productivity Measurements during Software Development - An Empirical Study’. International Journal of Software Engineering and Knowledge Engineering 26(3):457–90. DOI: 10.1142/S0218194016500194
