Algoritmo de Decisão para Offloading Computacional em Vehicular Fog Computing com Pedestres
Abstract
With a more significant number of devices integrated and connected in a VANET (Vehicular Ad Hoc Networks), there is greater availability and variety of computing resources to run applications. In VANETs, VFC (Vehicular Fog Computing) technology establishes vehicles, edge, and cloud as resourceproviding infrastructures. However, the use of VFC as infrastructure for pedestrians is still limited, with few works addressing computational offloading in such a scenario. In this context, we implemented a decision algorithm for the offloading process based on resources provided by VFC to guarantee better offloading and latency rates. The results showed that the implemented algorithm obtained efficiency rates above 90% in the tested scenarios and a reduction of up to 40% in the offloading execution time compared to a random approach tested.
References
Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., and Zhao, L. (2017). Vehicle-to-everything (v2x) services supported by lte-based systems and 5g. IEEE Communications Standards Magazine, 1(2):70-76.
de Almeida, T. T., Júnior, J. G. R., Campista, M. E. M., and Costa, L. H. M. K. (2020). Uma análise de desempenho do wi-fi direct para comunicações veículo-pedestre. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 253-266. SBC.
De Souza, A. B., Rego, P. A., Carneiro, T., Rodrigues, J. D. C., Rebouças Filho, P. P., De Souza, J. N., Chamola, V., De Albuquerque, V. H. C., and Sikdar, B. (2020). Computation offloading for vehicular environments: A survey. IEEE Access, 8:198214-198243.
de Souza, A. B., Rego, P. A. L., Rocha, P. H. G., Carneiro, T., and de Souza, J. N. (2020). A task offloading scheme for wave vehicular clouds and 5g mobile edge computing. In GLOBECOM 2020-2020 IEEE Global Communications Conference, pages 1-6. IEEE.
Eckermann, F., Kahlert, M., and Wietfeld, C. (2019). Performance analysis of c-v2x mode 4 communication introducing an open-source c-v2x simulator. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pages 1-5. IEEE.
Gonçalves, D. M., Bittencourt, L. F., and Madeira, E. M. (2019). Análise da predição de mobilidade na migração de aplicações em computação em névoa. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 580-593. SBC.
Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., and Chen, S. (2016). Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, 65(6):3860-3873.
Ibrahim, K. and Weigle, M. C. (2008). Cascade: Cluster-based accurate syntactic compression of aggregated data in vanets. In 2008 IEEE Globecom Workshops, pages 1-10. IEEE.
Khan, M. J., Khan, M. A., Beg, A., Malik, S., and El-Sayed, H. (2022). An overview of the 3gpp identified use cases for v2x services. Procedia Computer Science, 198:750-756.
Li, F., Chen, W., Shui, Y., Wang, J., Yang, K., Xu, L., Yu, J., and Li, C. (2019). Connectivity probability analysis of vanets at different traffic densities using measured data at 5.9 ghz. Physical Communication, 35:100709.
Lin, Y.-D., Hu, J.-C., Kar, B., and Yen, L.-H. (2019). Cost minimization with offloading to vehicles in two-tier federated edge and vehicular-fog systems. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pages 1-6. IEEE.
Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., and Zorzi, M. (2018). End-to-end simulation of 5g mmwave networks. IEEE Communications Surveys & Tutorials, 20(3):2237-2263.
Nguyen, Q.-H., Morold, M., David, K., and Dressler, F. (2019). Adaptive safety context information for vulnerable road users with mec support. In 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pages 28-35. IEEE.
Nguyen, Q.-H., Morold, M., David, K., and Dressler, F. (2020). Car-to-pedestrian communication with mec-support for adaptive safety of vulnerable road users. Computer Communications, 150:83-93.
Sewalkar, P. and Seitz, J. (2019). Vehicle-to-pedestrian communication for vulnerable road users: Survey, design considerations, and challenges. Sensors, 19(2):358.
Shi, J., Du, J., Wang, J., Wang, J., and Yuan, J. (2020). Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(12):16067-16081.
Souza, A. B., Celestino, J., Xavier, F. A., Oliveira, F. D., Patel, A., and Latifi, M. (2013). Stable multicast trees based on ant colony optimization for vehicular ad hoc networks. In The International Conference on Information Networking 2013 (ICOIN), pages 101-106. IEEE.
Wang, Z., Zhong, Z., Zhao, D., and Ni, M. (2018). Vehicle-based cloudlet relaying for mobile computation offloading. IEEE Transactions on Vehicular Technology, 67(11):11181-11191.
Xiao, L., Zhuang, W., Zhou, S., and Chen, C. (2019). Learning while offloading: Task offloading in vehicular edge computing network. In Learning-based VANET Communication and Security Techniques, pages 49-77. Springer.
Yoo, S. K., Cotton, S. L., Zhang, L., Doone, M. G., Song, J. S., and Rajbhandari, S. (2021). Evaluation of a switched combining based distributed antenna system (das) for pedestrian-to-vehicle communications. IEEE Transactions on Vehicular Technology, 70(10):11005-11010.
